哺乳动物肠道微生物群的摘要成员代谢宿主没有消化的各种复杂碳水化合物,这些碳水化合物被集体标记为“饮食纤维”。虽然每个菌株用来在肠道中建立营养生态位的酶和转运蛋白通常是非常特异的,但碳水化合物结构与微生物生态学之间的关系是不完美的。本研究利用了复杂的碳水化合物结构确定的最新进展来测试纤维单糖组成对微生物发酵的影响。在72小时的时间内,在改良的小型反激阵阵列系统中,通过合并的猫粪接种物在经过72小时的经过修改的小型粪便中发酵了具有不同单糖组成的55个纤维。单糖葡萄糖和木糖的含量与发酵过程中pH的降低显着相关,这也可以从短链脂肪酸乳酸,丙酸,丙酸和信号传导分子吲哚二乙酸的浓度中预测。微生物组的多样性和组成也可以通过单糖含量和SCFA浓度来预测。尤其是,乳酸和丙酸的浓度与最终α多样性相关,并且与包括乳杆菌和dubosiella在内的几个属的相对丰度显着相关。我们的结果表明,单糖的组成提供了一种富裕方法,以比较饮食,肠道微生物群和代谢产物产生的饮食纤维纤维和发现的联系。
肠道分子对于人体来说是必不可少的。据估计,我们体内的微生物共同占人类细胞数量的十倍(Qin等,2010)。最近的证据强烈表明,这些微生物的功能几乎像额外的器官,积极参与塑造和维持我们的生理学(Qi等,2021)。肠道微生物群在调节激素水平,对宿主激素的反应甚至产生其激素方面起关键作用(Sudo,2014年)。因此,它被认为是完全闪烁的内分泌器官,其作用范围延伸至遥远的器官和途径(Qi等,2021)。微生物群和激素之间的复杂关系对健康,行为,代谢,免疫和繁殖的各个方面具有深远的影响(Neuman等,2015)。健康的肠道微生物群由6个门组成,包括富公司,细菌植物,肌动杆菌,proteeobacteria,fusobacteria和verrucomicrobia(Crudele等,2023; Hamjane et al。,2024)。两个门的富公司和细菌剂占肠道菌群的90%(Hamjane等,2024)。菌群组成的变化会显着影响健康。这些变化可以在原因或后果的背景下进行评估。然而,不可否认的是,肠道菌群与我们身体的系统协同作用,以深刻影响健康。微生物群和激素之间的相互作用是双向的。在William的评论中所证明的是,激素具有直接影响菌群多样性和组成的能力,而相反,微生物群可以调节激素的产生并介导激素功能(Williams等,2020)。肠道菌群的组成因性激素,下丘脑 - 垂体 - 肾上腺(HPA)轴和胰岛素的失调,喂养行为和肥胖(Yoon and Kim,2021; Farzi et al。,2018; Kelly et al。,2018; Kelly et al。,2015; rusch et;肠道菌群通过与胰岛素,生长素素和GLP-1等激素相互作用,在调节喂养行为和代谢中起关键作用(Williams等,2020)。研究肠道菌群与肥胖之间关系的研究解释了肠道微生物群可以改变宿主代谢以及不疾病的肠道肠菌群在肥胖发展中的作用(Qi等,2021; Angelakis等,2012; Everard et el。,Everard等,2013; Everard等,2013)。肠道菌群产生的数十种代谢产物会影响能量调节和胰岛素敏感性(Qi等,2021;Wahlström等,2016)。代谢物,例如短链脂肪酸(SCFA)和胆汁酸在代谢综合征的中心病理中起重要作用,例如胰岛素抵抗;这些代谢物是影响能量平衡和胰岛素敏感性的肠道菌群的产物(Wahlström等,2016; Den Besten等,2015)。此外,抗糖尿病药物通过促进负责SCFA产生的微生物群生长,从而对丁酸酯和丙酸酯的水平产生积极影响。了解肠道细菌代谢物在内分泌疾病发展中的各种影响对于发现针对代谢疾病的新靶标和新药的发展至关重要。这些微生物群驱动的效应的潜力是深刻的,需要进一步研究其基础。
摘要:DynamicIntractionsbetnewnewmicrobiotaandahost'sinnateandAdaptiveimmune系统对于维持肠道稳态和抑制插入至关重要。肠道微生物群代谢蛋白质和复杂的碳水化合物,合成维生素,并产生大量的代谢产物,这些代谢产物可以介导肠道上皮细胞和免疫细胞之间的串扰。作为一种防御机制,肠道上皮细胞产生了从宿主免疫细胞中隔离菌群并降低肠道通透性的粘膜屏障。肠道细菌与粘膜免疫系统之间的相互作用受损会导致潜在的致病革兰氏阴性细菌及其相关的代谢变化的丰富性增加,从而破坏上皮屏障和对感染的易感性增加。肠道营养不良或肠道微生物组成的阴性改变也会导致免疫反应失调,导致炎症,氧化应激和胰岛素抵抗。随着时间的流逝,慢性营养不良以及微生物群及其代谢产物在粘膜屏障中的渗漏可能会增加2型糖尿病,心血管疾病,自身免疫性疾病,炎症性肠病和多种癌症的患病率。在本文中,我们重点介绍了具有粘膜免疫力的关键作用肠道细菌及其代谢产物(短链脂肪酸(SCFA))。
可可豆壳(CBSS)是可可生产链的副产品,其特征是饮食纤维(DF)含量。这项工作的目的是评估来自原始CBS的DF的益生元活性,以及用不同酶混合物处理的Defatt和Defatt和Dephenoligation CBSS(以其自由形式的多酚)评估,以增加可发酵的纤维部分。可发酵性通过结肠发酵的体外模型,使用微生物群选择性地适应了结肠的更近端和大多数远端隔室。结果显示,通过用纤维化酶混合物处理的脂质和无多酚CBS的发酵产生了大量的短链脂肪酸(尤其是乙酸)。在两个结肠区域中,该样品增强了SCFA的产生,这表明该酶驱动的加工对改善CBS的益生元效应的潜在有用性。尽管有这些发现,但酶处理样品的DF含量并没有变化,尤其是关于可溶性饮食纤维(SDF)部分的变化。这种结果表明,在纤维分数中可能发生了结构性变化,从而提高了其发酵性。根据循环经济的概念,在CBSS的生物估计化中开辟了一个新的情况。
在肠道,脑,微生物组和脂肪组织(在)中合成的食欲刺激(甲状腺素)和抑制食欲抑制(厌食)信号之间的平衡和相互作用似乎在食物内部和饮食行为和喂养行为,焦虑和喂养行为和抑郁症的调节中起着至关重要的作用。控制能量平衡机制的失调可能导致饮食失调,例如神经性厌食症(AN)和神经性贪食症(BN)。A是一种精神病,由慢性自我诱导的极端饮食限制定义,导致体重极低和肥胖。bn被定义为失控的暴饮暴食,这是通过自我引起的呕吐,禁食或过度运动来补偿的。最近描述了某些与肠道菌群相关的化合物,例如细菌性伴侣蛋白大肠杆菌酪蛋白酪蛋白酶B(CLPB)和食物来源的抗原,旨在触发自身抗体与食欲调节的激素和神经传输的交叉反应的产生。肠道微生物组可能是AT和能量稳态的潜在操纵剂。因此,对食欲,情感,情绪和营养状况的调节也受到神经免疫内分泌机制的控制,该机制通过针对神经肽,神经活性代谢物和肽的自身抗体的分泌来控制。在AN和BN中,胆碱能,多巴胺能,肾上腺素能和血清素能继电器可能导致异常,肠道和脑激素分泌。我们期望新知识可用于开发一种新型的预防和治疗方法,以治疗AN和BN。本综述总结了有关肠道营养不良,肠道渗透性,短链脂肪酸(SCFA),粪便微生物移植(FMT),血液脑屏障的渗透性以及在饮食失调中的肠脑屏障渗透性以及自身抗体的最新知识。
肠道微生物群通过影响免疫反应、消化和代谢稳态,在人类代谢健康中发挥着关键作用。最近的研究强调了肠道微生物群和 RNA(尤其是非编码 RNA)在调节代谢过程中的复杂相互作用。肠道微生物群失调与代谢紊乱有关,例如 2 型糖尿病、肥胖症、代谢相关脂肪肝病 (MAFLD) 和代谢性心脏病。微生物代谢物,包括短链脂肪酸 (SCFA),会调节 RNA 表达,影响脂质代谢、葡萄糖调节和炎症反应。此外,微小 RNA (miRNA) 和长链非编码 RNA (lncRNA) 是这些过程中的关键调节因子,新兴证据表明肠道衍生的代谢物会影响转录后基因调控。本综述综合了目前对肠道微生物群-RNA 轴及其在代谢疾病中的作用的理解。通过探索分子机制,特别是肠道微生物群信号如何调节 RNA 通路,该综述强调了针对该轴进行治疗干预的潜力。此外,它还研究了菌群失调如何导致表观遗传变化(如 m6A RNA 甲基化),从而导致疾病的发病机制。这些见解为预防和治疗代谢疾病提供了新的视角,并可能应用于个性化医疗。
醋酸,丙酸酯和丁酸酯的短链脂肪酸(SCFAS)是饮食纤维的肠道微生物发酵的主要产物,通过肠脑轴涉及微调脑功能。然而,SCFA在调节几种自主脑功能的下丘脑神经元网络中的影响仍然未知。使用NMR光谱法,我们检测到肥胖的瘦素基因敲除ob/ob小鼠的脑乙酸盐浓度降低,与瘦野生型同窝仔相比。因此,我们研究了乙酸盐对乙蛋白/低钙蛋白神经元(以下称为OX或OX-A神经元)的作用,这是调节能量稳态的低丘脑神经元的子集,我们在先前的研究中表征了瘦素缺乏瘦素和肥胖型肥胖型肥胖症的影响,而这些研究被过度激活。我们发现,乙酸盐会减少与OB/ OB小鼠中OREXIN神经元活性降低的伴随中的食物感染。通过评估食物智能行为和Orexin-A/c-Fos免疫反应性以及HCRT -EGFP神经元中的贴片钳记录,预脱蛋白mRNA的量化以及对GPR-43的nolabeling contification coppliation。我们的数据提供了有关乙酸或复杂碳水化合物对能量摄入和体重的慢性饮食补充作用机制的新见解,这可能部分是通过抑制甲状腺素能神经元活性介导的。
乳果糖是一种合成的二糖,由半乳糖和果糖通过 β-1,4-糖苷键连接而成。它是天然乳糖乳糖的异构化产物,乳糖是乳果糖生产的起始物质。由于乳果糖不能在小肠中被酶分解,因此完整的分子到达大肠后被结肠细菌代谢为相应的单糖,然后代谢为短链脂肪酸 (SCFA)、氢和甲烷 [5-7]。乳果糖的天然通便作用主要源于其渗透能力,可导致水分滞留,从而使粪便变软,并具有蠕动激活作用。此外,难消化的二糖在结肠中的代谢会导致腔内气体形成和渗透压增加,同时降低腔内 pH 值,从而缩短肠道转运时间 [1,8]。乳果糖还能有效减少肠道氨的产生,因此可用于预防和治疗肝性脑病 (HE) [5,6]。乳果糖的代谢作用似乎与剂量有关 [6]。虽然较低剂量(2 克/天以上)就能产生益生元作用并增强钙和镁等多种矿物质的吸收,但 10-30 克/天的中等剂量会产生用于治疗便秘的通便作用,而 60-100 克/天的高剂量则具有用于治疗 HE 的解毒作用 [5,6,9]。
摘要:肠道菌群谱是由饮食组成决定的,因此这种相互作用对于促进特定细菌生长和增强健康状况至关重要。红色萝卜(raphanus sativus l。)包含几种二级植物代谢产物,可以对人类健康产生保护作用。最近的研究表明,萝卜叶的主要营养素,矿物质和纤维的含量高于根,并且它们作为健康食品或补充而引起了人们的关注。因此,应考虑整个植物的消费,因为其营养价值可能更具兴趣。这项工作的目的是评估葡萄糖素酸盐(GSL)富集的萝卜在肠道微生物群和与代谢综合征相关的功能上的影响,并使用体外动态胃肠道系统以及几种在研究中产生的细胞模型来对不同的健康指标产生反应性,并抑制了类似的健康状况,请抑制晶体元素,晶体元素群,并使用多种细胞影响,并影响了多种细胞模型。氧(ROS)。红萝卜的治疗对短链脂肪酸(SCFA)产生有影响,尤其是在乙酸和丙酸和许多产生丁酸酯的细菌上,这表明整个红萝卜植物(叶子和根)的消耗可能会改变人类肠道型微生物群体对更健康的人。对代谢综合征相关功能的评估显示,内皮素,白介素IL-6和胆固醇转运蛋白相关的生物标志物(ABCA1和ABCG5)的基因表达显着降低,这表明三种与代谢综合征相关的风险因素的改善。结果支持这样的想法,即在红萝卜作物上使用引起者及其进一步的消费(整个植物)可能有助于改善一般健康状况和肠道菌群概况。
,我们使用过去二十年(直到2023年10月)发表的文献进行了一项广泛的研究,涉及将SCFA与肌肉减少症和2型糖尿病的发展联系起来的复杂机制。美国国家医学图书馆(PubMed),科学和中国国家知识基础设施(CNKI)是电子数据库,用作与我们主题相关的相关文章的来源。选择了2003年1月1日至2023年10月1日之间发表的研究,以避免任何过时的数据。我们使用了以下关键词的不同组合:“肠道菌群”,“短链脂肪酸”,“胰岛素抵抗”,“ 2型糖尿病”,“肌肉减少症”,“免疫学途径”,“疾病途径”,“ dosbibiosis”和“治疗”和“治疗”。包括各种文章类型,例如临床试验,随机对照试验,多中心研究,评论,准则和荟萃分析。我们主要通过标题和摘要筛选了这些文章。之后,我们继续进行全文评估。本叙事评论的重点是三个主要关键点。从所选文章中提取的所有相关信息均以文本形式汇总。首先,我们总结了肠道微生物群的组成变化与2型糖尿病和肌肉减少症的发展之间的新联系,尤其是SCFAS生产降低对它们的影响。之后,我们展示了这些病理变化如何导致2型糖尿病患者的肌肉减少症。这篇评论的最后一部分侧重于潜在的治疗选择。筛选过程如图1。回顾了文献和课程内容的类型后,本综述包括51项研究(图1)。
