表 1:基线特征(n = 12)年龄,中位数(范围)5.5 岁(2-25 岁)女性,n(%)8(67%)发育迟缓(%)11(92%)智力障碍(%)轻度中度重度极重度
引入编码电压门控钠(Na V)通道的基因中的致病变异在患有早发作,发育和癫痫性脑病(DEE)的个体中经常发现,以及相关的神经发育障碍(NDDS)(NDDS)(1,2)。确定Na V通道变体的功能后果可以提供有关病理生理机制的信息,并可能指导精确的治疗方法(3,4)。使用正确的分子环境(例如,物种起源,剪接同工型)来研究离子通道变体的功能,对于准确的评估至关重要。编码Na V 1.6的SCN8A中的致病变异已成为神经衰变疾病的重要原因,在婴儿期间典型发作(5)。最早发现的DEE与具有功能获得性能的非截断变体(例如增强的持续电流,激活的电压依赖性改变)。随后,在患有临床严重程度较大的表情的个体中发现了SCN8A变体,而没有癫痫发作(6)。在成熟的神经元中,Na V 1.6位于轴突初始段,该通道用于发起动作电位(7)。基因在早期发育过程中经历了特定的替代剪接事件,包括框架内包含2个不同版本的外显子5中的1个,该版本编码了第一个电压 - 感应域的一部分(8)。重要的是,国家生物技术信息中心(NCBI)指定为变体1(NM_014191)的SCN8A参考编码顺序(NM_014191)包括外显子5N,而包括外显子5A的序列为外显子5N在胚胎发育期间和出生后立即占主导地位,但大约1岁的转录本包含替代外显子5A超过含有5N的外显子,并且5A同工型在春季春季占主导地位(9)。
电压门控钠通道异构体 Na v 1.6 是一种遍布全身的蛋白质,在中枢神经系统 (CNS) 中表达丰富。在 SCN8A 脑病中,SCN8A 基因的功能获得导致 Na v 1.6 通道过度兴奋。鉴于 Na v 1.6 遍布全身,SCN8A 脑病中这些功能获得突变的结果对患者来说是毁灭性的。患者在 0-18 个月大时开始癫痫发作,这些癫痫发作通常对治疗无效。此外,患者通常患有严重的认知障碍、发育迟缓、胃肠道/呼吸功能障碍以及轻度至重度运动障碍。大约 10% 的 SCN8A 患者还患有癫痫猝死 (SUDEP)。我们目前对 SCN8A 脑病中 SUDEP 的了解不足。我们使用 SCN8A 脑病小鼠模型的脑电图记录,旨在通过实验室开发的一种新型机器学习算法分析小鼠随时间发生的癫痫发作。我们的目标是尝试更好地了解小鼠模型中 SUDEP 发生的时间和原因,以及任何现有或实验性抗癫痫药物是否可以预防或延迟此事件的发生。首先,我们将使用之前的脑电图记录来训练我们的机器学习模型,以检测和分析 SCN8A 小鼠模型中的自发性癫痫发作。我们的机器学习算法将在癫痫发作时在我们的文件上进行注释,并且还将提供发作事件的功率谱分析。除了我们的脑电图数据外,我们的新算法还将结合 MouseTrakr 软件的数据来研究小鼠行为的变化以及导致 SUDEP 的癫痫发作活动的变化。
癫痫的科学摘要药物治疗仍然非抑制作用,大约三分之一的患者在医学上是难治性的。有效疗法的开发需要新颖的实验系统来建模癫痫发育。一个非常有前途的新平台是人类脑器官(或简单的器官),即3D培养物,其中由人类胚胎或诱导多能干细胞(HESC或HIPSC)产生特定的脑样结构。类器官概括了人脑的许多结构特征,并为各种神经系统疾病提供了独特的见解。我们生成了“融合”器官结构,其中兴奋性神经元促进性皮层(CX)和抑制性神经元间的神经节启动(GE)种群整合了整合,从而产生了建模神经回路组装和癫痫发育的理想平台。使用这种技术,我发现hESC衍生的融合器可以在包括复杂振荡(复杂的振荡)中显示内神经元间调节的自发神经网络活动。我进行的单细胞RNA测序表明,融合对于中间神经元细胞的存活也至关重要,因为未使用的GE类器官显示出年龄增加的中间神经元簇的逐渐丧失,与融合不同。i还表明,来自RETT综合征患者的HIPSC衍生的融合器官,一种与癫痫高度相关的遗传疾病,具有癫痫样活性和网络振荡的变化,而网络振荡与同基因控制器可以改变。我通过用抗塞氏剂药物丙戊酸钠或p53抑制剂pifithrin-α治疗来挽救了其中一些异常。这些数据表明,融合器官模型增强了中间神经元的生存,体外概括了与癫痫相关的异常,并为治疗验证和发现提供了新的平台。基于这些数据和最新的初步发现,我建议扩展这种方法,以模拟大脑区域特定细胞变化以及严重发育和癫痫性脑病(DEE)的生理表型。i最近从SCN8A基因中具有癫痫相关突变的患者中产生了融合CX+GE和海马+GE(H+GE)类器官。scn8a编码电压门控钠通道Na V 1.6和SCN8A中功能突变的增益导致毁灭性的DEE,称为早期婴儿癫痫性癫痫性脑病13(EIEE13)。胎儿癫痫发作的报道使脑器官特别适合模型EIEE13。我的初步数据提出了高度过度过度的表型,其特征是SCN8A突变体CX+GE GE融合体中活机体两种光子成像和高振幅局部场电位(LFPS)的突发性。有趣的是,SCN8A突变体H+GE融合并没有显示出相同的过度表现表型,而是缺乏锋利的波浪波纹(SWR)振荡。SWR被认为是与海马记忆巩固相关的间神经元依赖性振荡。基于这些数据,我假设SCN8A突变体脑过度刺激性是由皮质兴奋性神经元驱动的,而海马中的SCN8A突变导致SWR振荡活性中的间神经元依赖性缺陷。目标1:确定scn8a突变体性过度刺激性表型中GE衍生的抑制性抑制作用与CX衍生的兴奋性神经元的作用。假设CX兴奋性神经元中SCN8A GOF突变引起的皮质兴奋性将通过对“未粘合”与“混合”融合的钙成像和LFP记录进行测试。在混合融合中,CX或GE将是SCN8A突变体,另一半将是无突出的。目标2:确定地球衍生的抑制性中间神经元在海马锋利波浪波动中的作用。假设SCN8A GOF突变仅限于GE衍生的中间神经元将足以消除H+GE融合器官中的SWR振荡,将通过在AIM 1。在利用新兴,有前途和人类细胞的技术来模拟癫痫病时,该提案有可能提供对癫痫病理生理学的开创性见解。此外,这些研究还集中在EIEE13的病理生理变化上,这与治疗癫痫的治疗任务一致。使用癫痫患者IPSC衍生的类器官,其潜力用于个性化和特定于患者的疾病建模,与以患者为中心的护理的治愈任务保持一致。
患者领袖在 2023 年社会科学会议上齐聚一堂,共同合作推动对抗罕见发育性和癫痫性脑病的进展。(从左到右)TESS 研究基金会运营经理 Amber Black;FamilieSCN2A 基金会创始人兼执行董事 Leah Schust Myers;ASXL 罕见研究基金会执行董事 Amanda Johnson;解码发育性癫痫的 JayEtta Hecker;FamilieSCN2A 基金会董事会主席 Jenny Burke;SCN8A 联盟执行董事兼联合创始人 Gabi Conecker;以及 TESS 研究基金会创始人兼执行董事 Kim Nye。TESS 研究基金会是 RAO 网络周期 1 的受助者;FamilieSCN2A 基金会是 RAO 网络周期 2 的受助者;SCN8A 联盟在 2024 年被选为 RAO 网络周期 3 的受助者。ASXL 罕见研究基金会还通过 Rare As One 项目获得了 CZI 的支持。
摘要:大麻素在认知和运动障碍的治疗方法中引起了人们的关注,这是神经系统疾病的特征。迄今为止,已经从大麻sativa中提取了100多种植物大麻含量,其中一些已显示出神经保护性能以及影响突触传播的能力。在这项研究中,我们研究了鲜为人知的植物大麻素,大麻诺(CBNR)对神经元生理学的影响。使用NSC-34运动神经元细胞系和下一代测序分析,我们发现CBNR影响与突触组织和专业化相关的CBNR突触基因,包括与细胞骨架和离子通道有关的基因。特别是钙,钠和钾通道亚基(Cacna1b,cacna1c,cacnb1,grin1,scn8a,kcnc1,kcnj9),以及与NMDAR相关的基因(AGAP3,Syngap1)和CABP1,CABP1,CABKP1,CABKVV)细胞骨架和细胞骨架相关基因(ACTN2,INA,TRIO,MARCKS,MARCKS,MARCKS,BSN,RTN4,DGKZ,HTT)。这些发现突出了CBNR在调节突触发生和突触传播中所起的重要作用,这表明需要进一步研究来评估CBNR在治疗许多神经疾病中表征运动障碍的突触功能障碍中的神经保护作用。
摘要目的:Perampanel是一种抗性药物,含有α-Amino-3-羟基-5-甲基-4-异恶唑丙酸受体受体拮抗剂的特性,可能在遗传性癫痫中具有靶向作用,并具有压倒性的谷氨酸受体激活。癫痫病,抑制γ-氨基丁酸抑制作用(例如SCN1A),过度活跃的兴奋性神经元(例如SCN2A,SCN8A)和谷氨酸受体(例如GRIN2A)中的变体具有特殊的兴趣。我们的目的是从用Perampanel处理的大型稀有网状癫痫队列中收集数据,以检测具有高疗效的可能亚组。方法:这个多中心项目基于Netre的框架(罕见癫痫的治疗网络),这是一个治疗罕见癫痫的儿科神经病学家网络。收集了用perampanel治疗的遗传性癫痫患者的回顾性数据。结果度量是响应率(降低50%),三个月后的癫痫发作降低百分比。鉴定出具有高疗效的病因亚组。 结果:总共招募了2个月至61岁(平均= 15.48±9.9岁)的137例患者,患有79例不同的病因。 平均剂量为6.45±2.47 mg,治疗期为2.0±1.78岁(1.5个月至8岁)。 62例患者(44.9%)接受治疗> 2年。 98例患者(71%)是反应者,93名(67.4%)选择继续治疗。 癫痫发作频率的平均降低为56.61%±34.36%。 60例患者(43.5%)的癫痫发作频率降低> 75%,其中包括38例(27.5%),率降低了90%。鉴定出具有高疗效的病因亚组。结果:总共招募了2个月至61岁(平均= 15.48±9.9岁)的137例患者,患有79例不同的病因。平均剂量为6.45±2.47 mg,治疗期为2.0±1.78岁(1.5个月至8岁)。62例患者(44.9%)接受治疗> 2年。98例患者(71%)是反应者,93名(67.4%)选择继续治疗。癫痫发作频率的平均降低为56.61%±34.36%。60例患者(43.5%)的癫痫发作频率降低> 75%,其中包括38例(27.5%),率降低了90%。以下基因显示出高处理功效:SCN1A,GNAO1,PIGA,PCDH19,SYNGAP1,POLG1,POLG2和NEU1。在17例(64.7%)患有Dravet综合征的患者中,有11个是由于SCN1A致病变异的原因是对Perampanel治疗的反应者;其中35.3%的癫痫发作降低了90%。其他病因对于癫痫发作降低> 90%的病因是GNAO1和PIGA。14例患者在睡眠电脑图模式中具有连续的尖峰和波动,在六名受试者中,Perampanel降低了癫痫样活性。显着性:Perampanel在罕见的遗传性癫痫患者中表现出很高的安全性和功效,尤其是在SCN1A,GNAO1,PIGA,PCDH19,SYNGAP1,CDKL5,NEU1和POLG中,提示与谷氨酸传输有关的靶向作用。
简介 1912 年,人们偶然发现了苯巴比妥的抗惊厥特性,这为现代癫痫药物治疗奠定了基础。随后的 70 年里,苯妥英、乙琥胺、卡马西平、丙戊酸钠和一系列苯二氮卓类药物相继问世。这些药物被统称为“公认的”抗癫痫药物 (AED)。20 世纪 80 年代和 90 年代,癫痫药物的协同开发已导致(迄今为止)16 种新药物被批准作为难控成人和/或儿童癫痫的辅助治疗,其中一些药物可作为新诊断患者的单一疗法。这些药物被统称为“现代”AED。在这一前所未有的药物开发时期,我们对抗癫痫药物如何在细胞水平上发挥作用的理解也取得了长足的进步。抗癫痫药物既不能预防也不能治疗,仅用于控制症状(即抑制癫痫发作)。反复发作的癫痫是神经系统间歇性和过度兴奋的表现,虽然目前市场上销售的抗癫痫药物的药理学细节仍未完全阐明,但这些药物基本上可以纠正神经元兴奋和抑制之间的平衡。人们认识到三种主要机制:调节电压门控离子通道;增强γ-氨基丁酸 (GABA) 介导的抑制性神经传递;减弱谷氨酸介导的兴奋性神经传递。表 1 重点介绍了目前可用的抗癫痫药物的主要药理学靶点,并在下文进一步讨论。当前抗癫痫药物靶点电压门控钠通道电压门控钠通道负责神经细胞膜的去极化和动作电位在神经元细胞表面的传导。它们在整个神经元膜、树突、胞体、轴突和神经末梢上表达。在产生动作电位的轴突起始段 (AIS) 中表达密度最高。钠通道属于电压门控通道超家族,由多个蛋白质亚基组成,在膜上形成离子选择性孔。天然钠通道由单个 α 亚基蛋白组成,该蛋白包含成孔区和电压传感器,与一个或多个辅助 β 亚基蛋白相关,这些辅助 β 亚基蛋白可以改变 α 亚基的功能,但对基本通道活动并非必不可少。哺乳动物脑中表达四种主要的钠通道 α 亚基基因,分别表示为 SCN1A、SCN2A、SCN3A 和 SCN8A,它们分别编码通道 Na v 1.1、Na v 1.2、Na v 1.3 和 Na v 1.6。这些通道在神经系统中的表达存在差异。Na v 1。3 的表达主要局限于发育早期阶段,而 Na v 1.1 是抑制性中间神经元的主要钠通道,Na v 1.2 和 Na v 1.6 在主要兴奋性神经元的 AIS 中表达。Na v 1.2 似乎
