这种SCNT卵母细胞的人工激活导致细胞分裂和染色体分离为伪极性体,并以70%的效率下的二核原体。与正常二倍体(n = 46)数量相比,极性体和Zygotes中单个染色体的下一代测序表明,染色体的数量降低了近一半(n = 19)(n = 19)。同源对的全面测序表明,平均将23对同源对的一半(n = 11)正确分离为极体和合子,而剩余的染色体对保持在一起,导致了肾上变。未检测到体细胞同源物之间的重组证据。
摘要遗传修饰(GM)猪的产生被认为是在生物医学研究中为各种疾病和猪开发具有抗病毒感染的动物模型动物的有价值的。可以使用几种方法(例如,使用GM细胞作为SCNT供体,直接注射转基因或基因组编辑成分(GEC)在受精的卵中直接注射到Zygotes中,使用Zygots,使用Zygote的体外电rOpration(Ep)在Zygote中,gecots restrone gececs,gecots,可以使用几种方法,例如使用GM细胞作为SCNT供体,直接注射转基因或基因组编辑成分(GEC),使用Zygotes,使用Zygots的体外电型(EP)在Zygote中,gecots,gecots refofter(ep) GEC进入经过SCNT处理的胚胎,并在GEC存在下经过SCNT处理的胚胎的体外EP。 在我们先前的研究中,我们对基于CRISPR/CAS9的GEC进行了细胞质注射到孤态激活的猪可以使用几种方法,例如使用GM细胞作为SCNT供体,直接注射转基因或基因组编辑成分(GEC),使用Zygotes,使用Zygots的体外电型(EP)在Zygote中,gecots,gecots refofter(ep) GEC进入经过SCNT处理的胚胎,并在GEC存在下经过SCNT处理的胚胎的体外EP。在我们先前的研究中,我们对基于CRISPR/CAS9的GEC进行了细胞质注射到孤态激活的猪
牲畜的遗传工程(GE)最初是主要使用核对核微注射到Zygotes(1985-1996)的。由于较低的整合效率,由于随机整合而导致的异常转基因表达以及在转基因创始动物中存在遗传镶嵌物,因此该技术的应用受到限制。尽管为国内物种建立了胚胎干细胞(ESC)的巨大努力,但牲畜不存在ESC GE技术。体细胞核转移(SCNT)的发展绕过了牲畜ESC的需求,并通过提供第一个基于细胞的基于细胞的遗传操作的平台来彻底改变牲畜转基因领域。自多莉(Dolly)诞生以来近二十年(1996 - 2013年),SCNT是产生敲除和敲除牲畜的唯一方法。新一代基因编辑技术的CRISPRS/CAS9系统的到来使我们能够轻松有效地引入精确的基因组修饰。这种技术进步加速了SCNT的GE牲畜的产生,并恢复了合子微观渗透,作为重要的GE方法。SCNT技术的主要优点是能够在动物产生之前体外确认所需的遗传修饰。还可以测试编辑的细胞的潜在脱靶突变。此外,这种方法消除了合子微观渗透后经常观察到的遗传镶嵌的风险。复制(2021)162 F11 – F22尽管效率低,但SCNT还是世界上许多实验室的完善程序,并将继续在GE牲畜领域发挥重要作用。
Re:对加拿大卫生部提议的修订政策的评论,内容涉及对源自体细胞核转移(SCNT)克隆牛和猪的食物的调节,以及它们的后代在加拿大作为新颖食品。2024年5月24日 - 提交给bmh-bdm@hc-sc.gc.ca联系人:加拿大生物技术行动网络坐标coordinator@cban.ca 902 209 4906 wwww.cban.ca向加拿大生物技术网络介绍了cigal and-gigmo,非基因工程的体细胞核转移(SCNT)的产品克隆牛和猪及其后代作为新食品,因此将其排除在第28级第28区(食品和药物法规的B部分)下的市场安全评估/通知之外。加拿大卫生部2003年的临时政策,以规范SCNT克隆及其后代作为新颖的后代的临时政策,以允许进一步研究。我们认为,这项研究还不完整,需要继续进行,尤其是随着技术的不断发展。政策提案为时过早,不必要。相反,我们敦促部门创建一个持续监管的时间表,以此作为收集更多证据和经验的手段,并确保政府的安全监督和加拿大人的透明度。该提案的SCNT克隆动物的时机出现在其他有争议的监管指导变化中,从许多基因编辑的植物中免除了新的食物法规。对基因工程食品的系统放松管制引起了严重的安全性和透明度的关注。1建议:•我们敦促所有部门对SCNT克隆及其后代的产品以及所有基因工程生物(包括所有基因编辑产品)维护市场前监管。•应撤销许多基因编辑产品的最新决定,以恢复政府的监督和强制性透明度。•我们敦促联邦政府通过实施与食品系统中新技术有关的预防原则来重新定义安全和透明度的优先级。
我们报告了通过体细胞核移植 (SCNT) 和胚胎碱基编辑克隆了一只 12 岁的转基因绿色荧光蛋白 (GFP) 猴,同时对腺嘌呤碱基编辑器 (ABE) 进行了安全性评估。我们首先展示了 ABEmax 通过在 293T 细胞中对 GFP 序列进行 A 到 G 编辑来沉默 GFP 的能力。随后,使用表达 GFP 的猴子的供体细胞,我们成功生成了 207 个 ABEmax 编辑 (SCNT-ABE) 和 87 个野生型 (SCNT) 胚胎,用于胚胎移植、基因分型以及基因组和转录组分析。使用一种名为 OA-SCNT 的新方法,对 SCNT-ABE 和 SCNT 胚胎进行比较以进行脱靶分析,而无需遗传变异的干扰。在编辑的猴胚胎中,ABEmax 不会诱导明显的脱靶 DNA 突变,但会诱导广泛的脱靶 RNA 突变,其中 35% 是外显子。研究结果为ABE的临床应用提供了重要参考。
用于农业和生物医学应用的基因编辑猪通常使用体细胞核移植 (SCNT) 生成。然而,SCNT 需要使用单克隆细胞作为供体,而耗时费力的单克隆选择过程限制了大批基因编辑动物的生产。在这里,我们开发了一种快速有效的方法,称为 RE-DSRNP(报告 RNA 富集双 sgRNA/CRISPR-Cas9 核糖核蛋白),用于生成基因编辑供体细胞。 RE-DSRNP利用双sgRNA精准高效的编辑特点和报告RNA富集的RNP(CRISPR-Cas9核糖核蛋白)高编辑效率、低脱靶、无转基因、低细胞毒性的特点,无需筛选单克隆细胞,将供体细胞的生成时间从3-4周大大缩短至1周,同时也降低了供体细胞凋亡和染色体非整倍体的程度。我们应用RE-DSRNP技术生产了带有野生型p53诱导的磷酸酶1(WIP1)基因缺失编辑的克隆猪:在32头断奶克隆猪中,31头(97%)携带WIP1编辑,15头(47%)为设计片段缺失纯合,未检测到脱靶事件。 WIP1 基因敲除 (KO) 猪表现出雄性生殖障碍,这说明 RE-DSRNP 可用于快速生成精确编辑的动物,用于功能基因组学和疾病研究。RE-DSRNP 在大型动物中的强大编辑性能以及其显著缩短的 SCNT 供体细胞生成所需时间,为其在快速生成无转基因克隆动物种群中的应用前景提供了支持。
微注射预复合逆转录病毒SCNT转座子-基于基因组编辑的DNA进入早期DNA,通过精子递送遗传介导的基因组改变阶段受精卵进入受精卵工程细胞整合(ZFNs,TALENs,CRISPR / Cas9)
由于标准体外受精技术在马身上尚不可行,因此人们已使用多种不同技术来制造马胚胎用于研究。其中一种方法是孤雌生殖,即在没有引入精子的情况下诱导卵母细胞成熟为胚胎状状态,因此它们不被视为真正的胚胎。另一种方法是体细胞核移植 (SCNT),即将现存马的体细胞核插入去核的卵母细胞中,从而产生供体马的遗传克隆。由于美国马卵母细胞供应有限,研究人员已研究将马体细胞核与其他物种的卵母细胞相结合以制造用于研究的胚胎的可能性,但迄今为止尚未成功。人们对使用暴露于外源 DNA 的精子生产转基因动物的兴趣也日益浓厚。成功创建转基因马胚泡表明精子介导基因转移 (SMGT) 具有良好的前景,但这种方法并不适用于基因治疗等其他应用,因为它不能用于诱导靶向突变。这就是 CRISPR/Cas9 等技术至关重要的原因。在这篇评论中,我们认为孤雌生殖、SCNT 和跨物种 SCNT 可以被视为基因操作策略,因为它们可以产生与亲本细胞基因相同的胚胎。在这里,我们描述了这些方法的执行方式及其应用,还描述了用于直接修改马胚胎的几种方法:SMGT 和 CRISPR/Cas9。
基于新型CRISPR/CAS9基因组编辑技术的加速开发提供了一种可行的方法,可以在哺乳动物基因组中引入各种精确的修饰,包括同时引入多个编辑,并有效地将长DNA序列的插入插入到特定的目标位置以及执行核核的特定位置。因此,CRISPR/CAS9工具已成为引入牲畜基因组改变的首选方法。新的基于CRISPR/CAS9的基因组编辑工具的列表正在不断扩展。在这里,我们讨论了为提高基因编辑工具的效率和特殊性的方法,以及可用于基因调节,基础编辑和表观遗传修饰的方法。此外,将讨论两种用于生产基因编辑农场动物的主要方法的优势和缺点:将讨论体细胞核转移(SCNT或克隆)和合子操作。此外,我们将回顾基因编辑技术的农业和生物医学应用。
性别控制技术在家畜生产中具有重要意义,尤其对于快速繁殖的水牛(bubalus bubalis)具有重要意义,本研究以水牛为研究模型。我们已证实整合到小鼠Y染色体上的荧光蛋白可用于小鼠植入前胚胎的性别鉴定。首先,我们优化了增强型绿色荧光蛋白(eGFP)和mCherry外源基因在Neuro-2a细胞、小鼠胚胎干细胞、小鼠胚胎细胞(NIH3T3)、水牛胎儿成纤维细胞(BFF)中的靶向整合效率。结果表明,靶标两侧同源臂长度为800 bp比300 bp或300 bp/800 bp更有效。当细胞补充了 pifithrin-µ(一种抑制 p53 与线粒体结合的小分子)时,BFF 细胞中同源定向修复 (HDR) 介导的敲入也得到了显著改善。250 V 的三个脉冲在 BFF 细胞中产生最有效的电穿孔,并且发现 1.5 µ g/mL 嘌呤霉素是筛选的最佳浓度。此外,利用 CRISPR/Cas9 介导的基因编辑结合体细胞核移植 (SCNT) 技术成功生成了 Y-Chr-eGFP 转基因 BFF 细胞和克隆水牛胚胎。在第 6-8 代时,Y-Chr-eGFP 转基因 BFF 细胞的生长率和细胞增殖率明显低于非转基因 BFF 细胞;甲基化相关基因 DNMT1 和 DNMT3a 的表达水平相似;然而,与非转基因细胞相比,Y-Chr-eGFP 转基因 BFF 细胞中乙酰化相关基因 HDAC1 、 HDAC2 和 HDAC3 的表达水平显著较高(p < 0.05)。Y-Chr-eGFP 转基因 BFF 被用作 SCNT 的供体,结果表明 eGFP 报告基因适用于胚胎性别的可视化。克隆水牛胚胎的囊胚率相似;然而,与对照相比,转基因克隆胚胎的卵裂率明显较低。总之,我们优化了产生转基因 BFF 细胞的方案,并使用这些细胞作为供体成功产生了 Y-Chr-eGFP 转基因胚胎。