这项研究通过采用Varian的Halcyon线性加速器来评估印度癌症医院网络实现2个目标的实现。美国肿瘤学研究所(AOI)是南亚最大的癌症护理提供者网络之一。该小组运行23个线性加速器,每月在放射线肿瘤学部门治疗约600名新的癌症患者。除了提供可供人们使用的优质癌症的核心目标外,该集团还渴望改善他们对可持续医疗保健实践,社会责任和公司治理的贡献。此白皮书分析了通过AOI NAGPUR节省的能源效益,该可持续性益处配备了TrueBeam STX(C-ARM)和Halcyon线性加速器(O-Gantry)。
为了减轻全球环境影响,纺织业必须整合环境创新和运营效率。这项研究深入研究了绿色创新(GIV)和绿色的灵活性(GAD)对获得绿色竞争优势(GCG)的影响,并特别关注优先可持续性的绿色弹性供应链(GRC)所起的关键作用。该研究采用了一种横截面解释性调查方法,从印度尼西亚的150家纺织公司绘制数据。为了理解手头变量之间的动态关系,该研究采用了部分最小二乘结构方程模型(PLS-SEM)方法。发现的结果表明,绿色的灵活性和绿色创新直接增强了绿色竞争优势,同时也通过建立绿色弹性供应链而间接地做出了贡献。这些结果肯定,可持续实践和绿色创新是业务策略的关键组成部分,与监管和社会期望保持一致,并增强公司的竞争地位。这项研究的含义为利益相关者提供了宝贵的见解,使他们能够制定策略,将可持续性方面纳入其业务运营,以在竞争激烈的市场环境中实现最佳成果。
交变磁体 MnTe 中的自旋电荷关联产生 THz 晶格和自旋动力学 New Journal of Physics 2020 , 22, 083029 Physical Review B 2021 , 104, 224424 Physical Review Materials 2023 , 7, 054601 Advanced Materials 2024 , 2314076
阿育吠陀(Ayurveda)起源于三千年前的印度,强调了基于个体宪法(Prakriti)和称为Doshas的生理结构的个性化治疗方法。ai,对人类智力过程进行建模,越来越多地用于现代技术,以执行学习,推理和解决问题的任务。本文探讨了人工智能的使用来增强阿育吠陀的应用,旨在改善诊断,教育,治疗计划和研究,从而提高全球医疗系统的可及性和有效性。将人工智能(AI)纳入阿育吠陀需要利用AI在数据分析,模式识别和预测建模中的优势。进行了全面的文献搜索,以发现有关AI和Ayurveda整合的相关论文和文章。搜索涵盖的数据库,例如PubMed,Google Scholar和相关期刊。分析了收集的数据,以提供有关该主题的详细概述。将AI纳入阿育吠陀在许多领域都提供了有希望的好处,包括增强的诊断,个性化治疗,加速研究并改善阿育吠陀教育。AI与阿育吠陀的整合既提出了机遇和挑战。尽管AI可以提高诊断准确性,个性化治疗和加速研究,但它面临着挑战,例如分析大量数据集,根据环境来翻译梵语文献,在每种情况下了解阿育吠陀概念以及道德问题。未来的研究应集中于AI驱动的预测分析,数字化印度草药信息以及基于IT的诊断工具。
表 1. 有关环境和社会参数的主要国家立法 ...................................................................................................................... 21 表 2. 与许可程序相关的法律 ................................................................................................................................................ 37 表 3. 欧洲复兴开发银行的项目影响报告书 ............................................................................................................................................. 41 表 4. 环境和社会影响评估与塞尔维亚环境影响评估流程之间的异同 ............................................................................................. 43 表 5. 贝尔格莱德 - 尼什铁路线的拟议分段 ............................................................................................................. 49 表 6. 桥梁和桥梁结构 ................................................................................................................................................ 53 表 7. 车站数量和位置 ................................................................................................................................................ 53 表 8. 相关设施信息 ................................................................................................................................................ 59 表 9. 主要标准及加权系数 ............................................................................................................................................. 63 表 10. 各方案对人口的社会影响 ................................................................................................................................ 64 表 11. 各方案的平均噪音影响,考虑了较大的定居点................................................................................................................................ 65 表 12. 三种方案影响概览................................................................................................................................... 66 表 13. 平均二氧化碳排放量,以每客公里和每吨公里计算......................................................................................................................... 68 表 14. 最终选定的标准集......................................................................................................................................................... 68 表 15. 所有替代方案按每个子标准给出的数值.................................................................................................................... 69 表 16. 替代方案比较......................................................................................................................................................... 71 表 17. 替代方案比较......................................................................................................................................................... 73 表 18. 替代方案比较............................................................................................................................................................................. 74 表 19. 替代方案比较 ................................................................................................................................................ 76 表 20. 剖面 Obrež-Ratare, PD 182 的地下水位 ...................................................................................................... 107 表 21. 剖面 Varvarin-Ćićevac, PL-191 的地下水位 ............................................................................................. 107 表 22. 剖面 Striža-new, 951А 的地下水位 ............................................................................................................. 107 表 23. 剖面 Žitkovac-RO Moravica, 505 的地下水位 ............................................................................................. 108 表 24. 剖面 Bobovište, 500 的地下水位 ............................................................................................................. 108 表 25. 剖面 mramor 的地下水位 ............................................................................................................................. 108 表 26. 保护区 - 地下水卫生保护区概览来源...................................................................................................................................................................................................... 113 表 27. 2017 年至 2021 年期间南摩拉瓦河*平均月流量(Qavg)值概览 ...................................................................................................................................................................................... 119 表 28. 2017 年至 2021 年期间南摩拉瓦河*平均月水位(havg)值概览 ............................................................................................................................................................................. 120 表 29. 水分类 ...................................................................................................................................................................................................... 121108 表 24. Bobovište, 500 剖面地下水位..................................................................................................................... 108 表 25. mramor 剖面地下水位...................................................................................................................................... 108 表 26. 保护区 - 地下水源卫生保护区概览......................................................................................................................... 113 表 27. 2017 年至 2021 年期间南摩拉瓦河*平均月流量 (Qavg) 值概览 ............................................................................................................................. 119 表 28. 2017 年至 2021 年期间南摩拉瓦河*平均月水位 (havg) 值概览 ............................................................................................................................................. 120 表 29. 水分类......................................................................................................................................................................... 121108 表 24. Bobovište, 500 剖面地下水位..................................................................................................................... 108 表 25. mramor 剖面地下水位...................................................................................................................................... 108 表 26. 保护区 - 地下水源卫生保护区概览......................................................................................................................... 113 表 27. 2017 年至 2021 年期间南摩拉瓦河*平均月流量 (Qavg) 值概览 ............................................................................................................................. 119 表 28. 2017 年至 2021 年期间南摩拉瓦河*平均月水位 (havg) 值概览 ............................................................................................................................................. 120 表 29. 水分类......................................................................................................................................................................... 121
通过最大程度地减少内部缺陷来帮助维持PCB性能,可以通过横截面分析(无论是用于QC,故障分析还是R&D)来研究PCB板和组件的内部结构。可以检查具有光学显微镜的裂纹,空隙和其他缺陷的各个板和组件层。如果需要数据,则可以将显微镜与光谱结合使用。
为了通过最大限度地减少内部缺陷来帮助保持 PCB 性能,可以使用横截面分析来调查 PCB 板和组件的内部结构,无论是用于质量控制、故障分析还是研发。可以使用光学显微镜检查板和组件的各个层是否有裂纹、空洞和其他缺陷。如果需要成分数据,则可以将显微镜与光谱学结合起来。