螺丝包装。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。4个backercelldata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。5 5 Bachmarydata。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>6 Baronpancreasdata。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>7 Bhaduri Organica Suitata。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 8个对接Anescdata。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div>7 Bhaduri Organica Suitata。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>8个对接Anescdata。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div>8个对接Anescdata。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。9 BunishSpcdata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。10 CampbellbrainData。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。11 Chenbraindata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。12个反机分子。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。13 Darmanisbraindata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。14 erccspikeinconenentations。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。15 Ernstsermatogentesisdata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。16提取。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>18 Gilaihdihscdata。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>20 Grunhscdata。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>21 grunpancreasdata。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>22 Heorganatlasda。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>23 Hermannstattotonesissdata。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>24 Hucortexdata。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>25 Jessabraindata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。27 Kolodziejczykescdata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。28 Kotliarovpbmcdata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。29 Lamannobraindata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。30 Lawlorpancreasdata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。32 Ledergormyelomadata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。33 lengescdata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。34个列表。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。35个列表。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。35星期一。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。36 MacCoretinadata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。37 mairpbmcdata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。38 MarquesbrainData。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。39 Messmerescdata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。40 Muraropancreasdata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。41 Netorowahscdata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。42 Nowawskiciceortexdata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。44 Paulhscdata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。45波兰人。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。46 Pollngliadata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。47个重新效果。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。48重新处理。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。49 RichardCelldata。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 5149 RichardCelldata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。51
单细胞RNA-Sequencing(Scrnaseq)技术正在迅速发展。尽管在标准的scrnaseq概述中非常有用,但是丢失了原始组织中细胞的空间组织。相反,旨在维持细胞定位的空间RNA-seq技术的吞吐量和基因覆盖率有限。将SCRNASEQ映射到具有空间信息的基因上,在提供空间位置时会增加覆盖范围。但是,执行此类映射的方法尚未标记。为了填补这一差距,我们组织了梦想的单细胞转录组学挑战,重点是从scrnaseq数据中从果蝇胚胎中的细胞进行空间重新构造,利用了银标准,并带有银色标准基因,具有原位杂交数据,来自伯克利果蝇转录网络项目的原位杂交数据。34个参与的团队使用了不同的算法选择进行基因选择和位置预测,同时能够正确定位细胞的簇。选择预测基因对于此任务至关重要。预测基因的表达熵相对较高,空间聚类较高,并包括显着的发育基因,例如间隙和成对基因和组织标记。将前10种方法应用于斑马鱼胚胎数据集,产生了相似的性能和
了解基因调节和单细胞异质性需要有关蛋白质表达和RNA的信息,包括抗原特异性TCR/BCR的分析。我们邀请您加入有关基于Microwell的SCRNASEQ,Multioomics及其在各个科学领域的应用程序的信息丰富的混合研讨会。
GIST,胃肠道间质瘤;IHC,免疫组织化学;KIT,受体酪氨酸激酶 III 型;MRC2;2 型甘露糖受体 C;PDGFRA,血小板衍生的生长因子受体 α;scRNAseq,单细胞核糖核酸测序;TKI,酪氨酸激酶抑制剂;uPARAP,尿激酶纤溶酶原激活剂受体相关蛋白。
总结几个分类系统已开发出来定义结直肠癌(CRC)中的肿瘤亚型。一个系统提出,肿瘤异质性部分源自不同的癌症干细胞种群,这些癌细胞群体与比例不同的混合物共存。然而,缺乏单细胞分辨率已禁止对这些类型的干细胞的明确识别,因此对每种干细胞如何影响肿瘤表型。这里报告了从SW480 CRC细胞系中两个癌症干细胞亚型的分离和表征。我们发现这些癌症干细胞是正常隐窝底座(CBC)的致癌版本和肠道隐窝的再生干细胞(RSC)群体,其基因特征与“混合物”和其他CRC分类系统一致。使用CRC患者的公开可用的单细胞RNA测序(SCRNASEQ)数据,我们确定RSC和CBC癌干细胞通常在人CRC中共同呈现。为了表征对肿瘤微环境的影响,我们开发了亚型特异性异种移植模型,并通过SCRNASEQ在高分辨率下定义了它们的肿瘤微环境。RSC会产生分化的,炎症,生长缓慢的肿瘤。CBC会产生增生,未分化的侵入性肿瘤。通过这种增强的分辨率,我们将当前的CRC患者分类模式与TME表型和组织统一。
方法:CBF在上皮特异性AC6敲除(KO)小鼠气管环和空气液体界面(ALI)分化的AC6 KO-IPSC响应营地激动剂,并与正常对照组相比。睫状营地水平。单细胞RNA测序(SCRNASEQ)在AC6 KO和WT小鼠气管中进行,以了解MCC中AC6调控的机理。我们开发了AC6(C20)的特定活化剂及其对患病(CF和COPD)肺epplant组织和ALI培养物中CBF的影响。,我们对正常肺外植物组织的新鲜分离的上皮细胞进行了全细胞斑块夹具研究,然后在单个收集的细胞中进行了mRNA测序,以功能介绍了针对高度专业的分泌细胞的功能CFTR。
缩写:ABPA,过敏性支气管肺曲霉病; ACE -2,血管紧张素转化酶2; BMPR2,骨形态发生蛋白受体2; Covid -19,2019年冠状病毒病; ECPC,内皮菌落形成细胞;内皮,内皮 - 间充质转变; EPC,内皮祖细胞;电动汽车,细胞外囊泡; HSC,造血祖细胞; IL -1β,白介素-1β; IL -6,白介素-6; IPVDC,感染和肺血管疾病财团; MAPK,有丝分裂原活化的蛋白激酶; MMP -9,基质金属蛋白酶-9; MPAP,平均肺动脉压; PA,肺动脉; PAH,肺动脉高压; pH,肺动脉高压; PVD,肺血管疾病; SARS -COV -2,严重的急性呼吸综合征冠状病毒2; SCH,血吸虫病; SCHHSD,血吸虫病 - 相关的严重前门肝纤维化; Scrnaseq,单细胞RNA测序; TGF -β,转化生长因子 - β。
读取以映射和比对到单个参考基因组。使用墨西哥虾夷扇贝,本研究强调了当与两个不同的可用基因组组装比对时,来自同一样本的单细胞数据集的解释如何变化。我们发现,与不同的组装比对时,检测到的细胞数量和表达基因有很大不同。当将基因组组装与其各自的注释单独使用时,细胞类型识别会混淆,因为一些经典的细胞类型标记是组装特异性的,而其他基因在两个组装之间显示出不同的表达模式。为了克服多基因组组装带来的问题,我们建议研究人员与每个可用的组装比对,然后整合结果数据集以生成最终数据集,其中可以同时使用所有基因组比对。我们发现这种方法提高了细胞类型识别的准确性,并通过捕获所有可能的细胞和转录本最大限度地增加了可以从我们的单细胞样本中提取的数据量。随着 scRNAseq 变得越来越广泛,单细胞社区必须意识到基因组组装比对如何改变单细胞数据及其解释,尤其是在审查非模型生物的研究时。
抑制HDAC6与促炎性肿瘤微环境和抗肿瘤反应的增加有关。 在这里,我们表明高度特异性的HDAC6抑制剂AVS100(SS208)阻止了鼠和人类巨噬细胞中的M2极化,同时部分影响M1极化。 AVS100效应被观察到在M2极化条件下与M2相关基因特征的上调,CD206+和ARG1+巨噬细胞的产生阻塞。 口服AVS100在SM1黑色素瘤和CT26结肠癌模型中具有抗肿瘤作用,并提高了抗PD1治疗的疗效,从而导致黑色素瘤完全缓解并增加了结肠癌的反应。 肿瘤浸润免疫细胞的流式细胞仪和SCRNASEQ分析显示,肿瘤相关巨噬细胞中促炎/抗炎的比率增加,以及在AVS100治疗后的肿瘤内CD8效应T细胞的增加。 有趣的是,固化的小鼠没有复发,并且对随后的肿瘤挑战有抵抗力,这表明获得了抗肿瘤的T细胞免疫。 T细胞曲目分析效果因子/记忆T细胞在AVS100治疗后显示出较高数量的免疫主导T细胞克隆,表明T细胞扩张的增加。 最后,AVS100在大鼠和狗中没有表现出没有诱变性和强大的安全性,从而导致其最近的美国FDA清除了针对IA/B期临床试验的研究新药(IND)施用,旨在针对2024年上半年的本地高级或转移实体瘤的临床试验。抑制HDAC6与促炎性肿瘤微环境和抗肿瘤反应的增加有关。在这里,我们表明高度特异性的HDAC6抑制剂AVS100(SS208)阻止了鼠和人类巨噬细胞中的M2极化,同时部分影响M1极化。AVS100效应被观察到在M2极化条件下与M2相关基因特征的上调,CD206+和ARG1+巨噬细胞的产生阻塞。口服AVS100在SM1黑色素瘤和CT26结肠癌模型中具有抗肿瘤作用,并提高了抗PD1治疗的疗效,从而导致黑色素瘤完全缓解并增加了结肠癌的反应。 肿瘤浸润免疫细胞的流式细胞仪和SCRNASEQ分析显示,肿瘤相关巨噬细胞中促炎/抗炎的比率增加,以及在AVS100治疗后的肿瘤内CD8效应T细胞的增加。 有趣的是,固化的小鼠没有复发,并且对随后的肿瘤挑战有抵抗力,这表明获得了抗肿瘤的T细胞免疫。 T细胞曲目分析效果因子/记忆T细胞在AVS100治疗后显示出较高数量的免疫主导T细胞克隆,表明T细胞扩张的增加。 最后,AVS100在大鼠和狗中没有表现出没有诱变性和强大的安全性,从而导致其最近的美国FDA清除了针对IA/B期临床试验的研究新药(IND)施用,旨在针对2024年上半年的本地高级或转移实体瘤的临床试验。口服AVS100在SM1黑色素瘤和CT26结肠癌模型中具有抗肿瘤作用,并提高了抗PD1治疗的疗效,从而导致黑色素瘤完全缓解并增加了结肠癌的反应。肿瘤浸润免疫细胞的流式细胞仪和SCRNASEQ分析显示,肿瘤相关巨噬细胞中促炎/抗炎的比率增加,以及在AVS100治疗后的肿瘤内CD8效应T细胞的增加。有趣的是,固化的小鼠没有复发,并且对随后的肿瘤挑战有抵抗力,这表明获得了抗肿瘤的T细胞免疫。T细胞曲目分析效果因子/记忆T细胞在AVS100治疗后显示出较高数量的免疫主导T细胞克隆,表明T细胞扩张的增加。最后,AVS100在大鼠和狗中没有表现出没有诱变性和强大的安全性,从而导致其最近的美国FDA清除了针对IA/B期临床试验的研究新药(IND)施用,旨在针对2024年上半年的本地高级或转移实体瘤的临床试验。总的来说,我们对固体癌的靶向HDAC6的新型小分子抑制剂进行了临床前表征。AVS100作为单一药物具有抗肿瘤作用,并通过阻止免疫调节性肿瘤微环境和增加T细胞免疫力来提高免疫检查点抑制的功效。
由Joop Vermeer教授领导的植物分子和细胞生物学的实验室正在招募一名大多数。该位置可从2025年5月开始。这个由SNSF资助的职位持续了2年,可以选择额外的一年。VermeerLab研究了使用横向根形成作为模型的细胞间通信如何适应新器官的发出。最近,我们已经建立了胸膜大黄蜂作为一种新模型,以研究横向根发育过程中的空间适应反应。该项目旨在解解在侧根形成过程中内胚层去分化的基础机制。与博士生一起,您将使用CRE-Lox介导的细胞标记,多光子显微镜,SCRNASEQ(与Bert de Rybel教授,PSB,Ghent,Ghent)和CRISPR-CAS9介导的基因组工程。目标是更好地了解具有更复杂根系的物种中根分支的网络。我们使用并开发遗传和分子工具来操纵信号传导是特定的细胞层,即在多个尺度,转录组学,蛋白质组学,组织学和植物生理学上的高分辨率和实现现象,以了解多种植物物种中根分支的调节。要求: - 植物分子/细胞生物学的博士学位(或即将获得的) - 至少1个作者出版物(包括Biorxiv) - 愿意申请资金的意愿 - 熟练英语(口头和书面) - 对大师级学生的兴趣 - 对大师级学生的兴趣 - 以下几个或以下几个领域的经验: