摘要这项研究的目的是根据在电子竞技活动之前和之后测得的脑波阐明认知技能和浓度之间的关系。参与者是属于电子竞技俱乐部的二十名男性大学学生(平均年龄±21.40,SD = 1.65)。起初,参与者被放置在简单的脑电图(EEG)上,并测量了他们在基线时的心理状态两分钟。之后,进行了Stroop颜色Word测试(SCWT),以在电子竞技任务之前测量其认知技能(执行功能)。此外,在电子竞技任务之后,再次进行了SCWT。为了检查电子竞技任务期间的浓度程度,这项研究采用了一个简单的带型脑电图,该脑电图仅测量国际10-20系统定义的FP1点。因此,这项研究表明,在电子竞技任务之前和之后,认知技能(执行功能)可能会得到改善,并且在电子竞技比赛中可能会出现集中度。
2.2。方法论和实验结果,在每个脉冲之间,将重复的短路测试应用于DUT。测试条件为V ds = 600 V,V缓冲区= -5V/+18V和t情况=室温。已经进行了先前的研究[1,3],以估计平均T SCWT(短路承受时间),约5 µs。找到了这段时间,设置了脉冲宽度的70%T SCWT(3.5 µs)的百分比。因此,防止热失控,然后防止了灾难性的排水量故障模式。SC中的所有测试设备仅显示栅极源降解。图2,第一个短电路事件(#Cycle1,蓝线)和最后一个(#Cycle400,红线)中的波形显示。在栅极电流(I G)上观察到的异常效应(电流凸起)可能是由于PCB(印刷板电路)寄生元件引起的电磁干扰以及相关的共同模式电流。
b IRT Saint-Exupéry,图卢兹,法国 摘要 本文提出了 SiC MOSFET 栅极在重复短路应力下的老化规律。基于分析研究、物理形式和预处理数据,提出了基于应力变量 T j、T 脉冲栅极损伤 % 和 E sc 的数值拟合。对老化规律的准确性和预测能力进行了评估和比较。结果提出了一种基于 T Al_Top 金属源的新老化规律。该规律的拟合精度最高。最后,直接基于短路能量 E sc 的老化规律似乎具有最佳的预测能力。 1. 简介 SiC MOSFET 提高了功率转换器效率 [1]。如今,必须保证意外极端操作中的可靠性和稳健性。然而,由于平面结构中的电流密度更高和通道更短,SiC MOSFET 的短路 (SC) 耐受时间 (T SCWT @2/3 x V DSmax ) 低于硅器件,t SCWT = 2μs,而 Si IGBT 的 t SCWT = 10μs。最近,人们投入了大量精力来研究短路测试下的专用 SiC MOSFET 故障机制 [2,3]。高温变化导致栅极区域和 Al 源金属周围产生累积热机械应力。这些通常导致 SiC MOSFET 无法超过源自硅标准的 1000 次重复短路循环阈值。在 SiC MOSFET 栅极损坏之前,对其允许的短路循环次数的预测目前尚不为人所知,但这却是运行阶段主要关注的问题。在 [4] 中,提出了威布尔分布和直接 T j Coffin-Manson 老化定律,但漏源电压偏置降低至 200V,并使用栅极沟槽器件。在 [5] 中,作者通过实验证实了栅极老化与 T j 应力的依赖关系,但未拟合 Coffin-Manson 参数,因此未提出预测能力。在本文中,进行了重复的 SC 研究,以建模并提出一组 SiC MOSFET 上的预测分析栅极老化定律
背景:认知障碍(CI)是精神分裂症的独特特征,有证据表明儿童和青春期的精神分裂症(CAOS)代表了严重但罕见的精神分裂症形式,具有与成人发作条件的连续性。虽然在精神分裂症的成年人中已经确定了脑功能改变和CI之间的关系,但CAOS中脑功能异常的程度在很大程度上是未知的。在这项研究中,我们采用了静止状态功能磁共振成像(RS-FMRI)来研究CAOS患者大脑区域的功能改变。要评估跨多个认知领域的CI,我们利用了Stroop颜色和单词测试(SCWT)和基质共识认知电池(MCCB)测试。我们的目标是探索这些患者中功能性CI与低频频率(ALFF)水平的振幅之间的关联。
方法:从2021年到2022年,当前病例对照研究的统计人群包括伊朗德黑兰省的所有单语和双语学生(8-11岁)。使用便利抽样方法,选择了56名单语小学生(28名男孩和28个女孩)和56名双语小学生(28个男孩和28个女孩),并就情报和社会经济地位进行了匹配。双语小组的所有成员在进入小学之前就学会了第二语言。我们使用了威斯康星州卡排序测试(WCST)的计算机版本,Stroop Color和Word Test的计算机化版本(SCWT),Kim Kim Karad Visual Memory Test(KKVMT),Wechsler的数字跨度测试(WDST)以及Raven的彩色渐进式矩阵(RCPM)测试。通过描述性统计数据和方差多变量分析(MANOVA)分析了数据。
1俄亥俄州立大学,俄亥俄州哥伦布,俄亥俄州,美国,xing.174@osu.edu 2基因半导体公司,美国弗吉尼亚州斯特林市,弗吉尼亚州斯特林,ranbir.singh@genesicsemi.com 3 sandia国家实验室,美国新罕布什尔州阿尔巴克基,美国,美国,satcitt@sandia.gov--- 5-A SIC MOSFET由基因制造。涉及静态特征和短路可持续能力。在不同的门电压下以2.2 kV的排水偏置探索它们的饱和电流。在2.2 kV和18-V门电压的排水电压下测量两种设备的短路承受时间。将短路测试结果与来自四个供应商的1.2 kV SIC MOSFET进行了比较。测试结果表明,在SC事件中,通道长度和较高电压等级的SIC MOSFET具有更长的持续时间。此外,开发了短通道设备的设备模型。所有测试均在室温下进行。简介和动机 - 中型电压宽带隙(WBG)半导体大于3 kV对于功率转换应用具有吸引力,以提高性能。尽管这些设备中的大多数仍在出现,但价格明显较低,并且很容易从基因上获得设备。需要评估这些设备的性能和可靠性,以确保将来会有大量的市场吸引力。在本文中,评估了新一代3.3-kV,5-A SIC MOSFET的基因。根据测试结果开发了香料模型。SC测试的电路图如图4。与针对相似设备的静态和动态评估的先前报告相比,在这种情况下,有两种具有不同通道长度的设计类型。结果和意义 - 第一象限I-V曲线和阈值电压如图1-2所示。在其排水量泄漏电流,闸门源泄漏电流和电容中没有明显差异。如图3所示,测量额定电压(2.2 kV)和三个不同的栅极电压下的饱和电流。最初设置了2.2-KV,18-V v g„的SCWT测量。A 1-1.TS增量。图5-6中显示了每个回合的设备故障波形和SC电流。从四个不同供应商的1.2 kV SIC MOSFET也以额定电压(0.8 kV)和18-V V GS的2/3进行测量。比较图如图7所示。与短通道设备相比,长通道设备的RDSON有1.23倍的RDSON,0.49个时间ID(SAT),18-V V g„和1.4倍SCWT。对于诱导设备故障的脉冲,短通道设备在5范围内消散了约900 MJ,而长通道设备在7 TTS内消散了799 MJ。由于两个设备的模具尺寸几乎相同,因此具有较大SC能量的短通道设备比长通道设备更早。将V GS拉到零后,这两个设备都失败。这种故障机制可以是通过设备的熔融铝穿透[2]。与1.2 kV设备相比,3.3-kV脱离显示更长的SCWT。由于末端电容没有差异,因此仅针对短通道设备执行动态评估,如图8所示。在2.4-kV DC电压和6-A I DS电流时,打开损失为850 TD,为25 kV/ps,关闭损耗为150 µJ,为53 kV/ias。用于香料建模零件,使用级别1,级别2和降压电荷模型[3](图9)。拟合结果表明,降压电荷模型更适合这种中电压功率SIC MOSFET。车身二极管特性和末端电容也被建模并在图10中显示。参考 - [1] H. Wen,J。Gong,Y。Han和J. Lai,“ 3.3 kV 5 A SIC MOSFET的表征和评估,用于固态变压器应用”,2018年亚洲能源,电力和运输电气化会议(APTICERAIGT),2018。[2] K. Han,A。Kanale,B。J。Baliga,B。Ballard,A。Morgan和D. C. Hopkins,“ 1.2KV 4H-SIC MOSFETS和JBSFETS和JBSFETS的新短路故障机制”,2018 IEEE第6次IEEE第6届宽带电源设备和应用程序(WIPDA)(WIPDA)的第6届研讨会,2018年。[3] N. Arora,“ VLSI电路模拟的MOSFET模型”,计算微电子学,1993。