1。研究中心,中国518107的深圳市孙子大学第七附属医院; 2。干细胞生物学和组织工程中心,干细胞和组织工程的主要实验室,教育部,孙子森大学,广州,510080,中国; 3。宗山眼科中心,太阳森大学,广州,510060,中国; 4。内分泌学系,中国510080的广州太阳YAT-SEN大学的第一家附属医院; 5。国家 - 古旺冈联合工程实验室,用于诊断和治疗血管疾病,第一家附属医院,太阳Yat-Sen University,广州,中国510080; 6。生命科学学院,科学院科技大学,悉尼大学,ULTIMO,新南威尔士州2007年,澳大利亚。†同等贡献 *通讯副教授,钦朱耶,科学研究中心,中国广东的深圳市孙子森大学第七附属医院。电子邮件:yichj@mail.sysu.edu.cn,王王王博士,中国广东的深圳市太阳Yat-Sen University Sun Yat-Sen大学科学研究中心。 电子邮件:wangjch38@mail.sysu.edu.cn电子邮件:yichj@mail.sysu.edu.cn,王王王博士,中国广东的深圳市太阳Yat-Sen University Sun Yat-Sen大学科学研究中心。电子邮件:wangjch38@mail.sysu.edu.cn电子邮件:wangjch38@mail.sysu.edu.cn
图 2:使用核转染提供的 Cas9-mRNA 核酸酶、合成 sgRNA 和 ssDNA 寡核苷酸修复模板对 iPSC 进行基因编辑不会对 iPSC 形态造成干扰,可用于对基因组进行微小改变。A) 核转染后 48 小时拍摄的相位图像。比例尺为 100 μm。BC) 分析 LMNA 基因座 (B) 和 MYH7 基因座 (C) 中具有指定所需编辑 (蓝色) 或不需要的 INDEL (灰色) 的总 NGS 测序读数百分比。
• 建筑服务 • 建筑与施工 • 建筑清洁、病虫害防治和其他支持服务 • 工程设计和咨询服务 • 勘探和其他采矿支持服务 • 消防和安保服务 • 重型和土木工程施工 • 调查和安全服务 • 土地开发和场地准备服务 • 采矿 • 管道服务 • 物业运营商和房地产服务 • 采石 • 测绘服务 • 供水和处理与 ISC 一致的国家培训包
?),ying.zhang84@whu.edu.cn(y.z。)https://doi.org/10.1016/j.stem.2023.10.007https://doi.org/10.1016/j.stem.2023.10.007
摘要研究ND:YAG(1064 nm)光生物调节对脂肪组织衍生的干细胞(ADSC)在体外和体内的多节分分化和免疫调节电位的影响。对于体外实验,将细胞分为对照组(非辐照对照ADSC)和光生物调节组。0.5 j/cm 2,1 j/cm 2,2 j/cm 2和4 j/cm 2用于增殖测定;对于ADSC掺杂分化测定,应用了0.5 j/cm 2,1 j/cm 2; 1 J/cm 2用于迁移和免疫调节测定法。通过QPCR,油红O染色和艾丽莎白红染色评估分化能力。通过qPCR和人类细胞因子阵列评估免疫调节电位。DSS诱导的结肠炎模型。 用于测试光生物调节对体内ADSC免疫调节电位的影响。 nd:基于yag的光生物调节剂量依赖性地促进了ADSC的增殖和迁移; 1 J/cm 2对增殖表现出最佳的促进作用。 此外,nd:yag光生物调节促进了ADSC的成骨分化和棕色脂肪脂肪成生化分化。 潜在的免疫调节测定法显示了ND:YAG光生物调节改善了ADSC的抗炎能力和光生物调节受照射的ADSC有效地减轻了DSS诱导的结肠炎在体内的严重程度。 我们的研究表明:YAG光生物调节可能会增强ADSC的多节分分化和免疫调节电位。 这些结果可能有助于增强ADSC的临床应用治疗作用。DSS诱导的结肠炎模型。用于测试光生物调节对体内ADSC免疫调节电位的影响。nd:基于yag的光生物调节剂量依赖性地促进了ADSC的增殖和迁移; 1 J/cm 2对增殖表现出最佳的促进作用。此外,nd:yag光生物调节促进了ADSC的成骨分化和棕色脂肪脂肪成生化分化。潜在的免疫调节测定法显示了ND:YAG光生物调节改善了ADSC的抗炎能力和光生物调节受照射的ADSC有效地减轻了DSS诱导的结肠炎在体内的严重程度。我们的研究表明:YAG光生物调节可能会增强ADSC的多节分分化和免疫调节电位。这些结果可能有助于增强ADSC的临床应用治疗作用。然而,需要进一步的研究来探索ND:YAG光生物调节的机制,从而促进了ADSC的多素分化和免疫调节电位。
基因工程将细胞置于选择压力之下,需要几轮细胞倍增才能获得编辑后的克隆。因此,为避免基因组不稳定性积累,我们建议使用解冻后 2-3 次传代的细胞,尽可能接近质量测试过的细胞库。我们还建议在缺氧条件下(37 C/5% CO 2 /5% O 2 )维护 hiPSC 并进行基因编辑实验,因为在缺氧条件下培养 hiPSC 有几个优点,包括增强多能性、增加增殖、减少氧化应激、提高重编程效率、更好的分化潜力和低遗传不稳定性频率。2、3 这些好处可以提高 hiPSC 的质量和功能,这对于再生医学和疾病建模中的下游应用至关重要。Vallone 等人描述了描述板涂层、细胞维护以及酶促和非酶促解离的一般方案。4
摘要人类卵巢卵泡的体外模型将极大地有益于女性繁殖的研究。卵巢发育需要生殖细胞和几种类型的体细胞的结合。其中,颗粒细胞在卵泡形成和对卵子发生的支持中起关键作用。存在有效的方案来产生人类诱导的多能干细胞(HIPSC)的人类原始生殖细胞样细胞(HPGCLC),但产生颗粒细胞的一种方法是难以捉摸的。在这里,我们报告说,两个转录因子(TFS)的同时过表达可以将hipsc的分化指向颗粒样细胞。我们阐明了几种与颗粒相关的TF的调节作用,并确定NR5A1的过表达和Runx1或Runx2足以生成类似颗粒状的细胞。我们的颗粒状细胞具有类似于人类胎儿卵巢细胞的跨文章组,并概括了包括卵泡形成和类固醇生成在内的关键卵巢表型。与HPGCLC聚集时,我们的细胞形成卵巢样类器官(卵形),并支持从迁移到性腺阶段的HPGCLC发育,这是通过诱导DAZL表达来衡量的。该模型系统将为研究人类卵巢生物学提供独特的机会,并可以开发女性再生健康的疗法。
CEPT 补充剂可促进健康单细胞克隆的建立。使用补充有 CEPT 混合物的培养基生成并接种微流体平台的克隆细胞系显示出与亲本系相似的增殖率和对单细胞解离的敏感性(图 3)。新的克隆系在培养中保持未分化状态,表达预期的多能性标记,并通过定向分化方法展示多能性。使用 CEPT 补充剂生成的克隆细胞系保持正常核型,在基因组癌症热点处未检测到染色体异常或 p53 突变。