自动驾驶汽车(SDC)的兴起提出了重要的安全性,以在动态环境中解决。虽然现场测试是必不可少的,但当前方法在评估关键的SDC方案方面缺乏多样性。先前的研究引入了基于仿真的SDC测试,Frenetic是一种基于FRENET空间编码的测试生成方法,获得了以自然平滑曲线为特征的有效测试(约50%)的相对较高百分比。“最小距离距离”通常被视为适应性函数,我们认为这是一个亚最佳度量。替代,我们表明,深度学习的香草变压器模型可以学习导致越界状况的可能性。我们将这种“固有学习的度量”与遗传算法结合在一起,该算法已显示出很高的测试。为了验证我们的方法,我们对包含1,174多个用于挑战SDCS行为的模拟测试案例进行了大规模的经验评估。我们的调查表明,我们的方法表明,在SDC测试执行过程中生成非valiD测试案例,增加的多样性和高度准确性。
摘要:二氧化碳(CO 2)摄入量通过影响全球碳动态和气候稳定性来维持环境平衡至关重要。这项工作介绍了硫磺掺杂的多孔纳米碳(SDC)作为CO 2捕获的前瞻性吸附剂。SDC是通过利用椰子壳作为碳前体和过硫酸钾作为化学激活剂和硫掺杂剂而制造的。将硫的功能掺入碳矩阵中会产生结构可变性和活性位点,从而提高CO 2吸收能力。硫的特殊电结构允许与CO 2的分子间相互作用更大,从而增强了吸附性亲和力。根据实验数据,在0°C和1 bar和25°C和1 bar时,CO 2的吸收量最好在0°C和1 bar和2.56 mmol/g时测量为3.37 mmol/g。结果表明,SDC材料的较高孔隙度增加了CO 2摄取能力中的大型扩增。这项工作强调了硫掺杂,形态孔隙率和表面反应性之间的微妙相互作用,以增强CO 2隔离的有效性。SDC材料在应对当前的生态问题和开发CO 2收集技术方面具有巨大的希望。此处描述的建议的单步合成技术提供了一种可持续且环保的方法,用于合成用于碳捕获应用的SDC。关键字:多孔纳米碳,S兴奋剂,CO 2吸附,生物质,钾盐硫酸钾
GC已经建立了脱碳治理和管理结构,从董事级别到运营层面,以根据公司的净零目标在所有过程中的整合和效率。在这方面,GC任命了董事会级的公司治理和可持续性委员会(CGS),以通过季度会议监督与气候相关的问题。CGS得到可持续发展发展委员会(SDC)的支持,担任执行级委员会,由可持续性执行副总裁主持,担任最高级别的可持续性执行官担任该委员会主席。SDC的责任是管理战略方向缓解与气候变化有关的问题。这些包括减少温室气体目标设定,通过强调减少温室气体排放等,对项目投资计划的改进等。SDC担任委员会主席最高级别的可持续性执行官,还确定了在组织层面上实现脱碳和可持续发展所需的操作整合的计划,实际应用和测量系统。
3.1.3 SSE应提供其可再生能源产品,技术专长和行业联系的范围,以支持合作; 3.1.4 SDC应在BMS,节能服务和可持续性策略方面贡献其专业知识,以补充和增强协作。3.1.5当事方将提供合并的可持续性咨询服务,包括绿色建筑认证,低碳认证和其他相关服务,以促进可持续发展策略; 3.1.6当事方应共同努力,以识别和寻求新的市场以及SSE产品和SDC服务的销售和实施机会;
变化蒙版。2、8-15 最近,基于监督深度学习的卷积神经网络模型已成为主要方法。16-20 尽管研究进展迅速,但在体素或病变水平上的检测灵敏度和特异性仍然中等(灵敏度和特异性;,0.8)。4、7 我们之前引入了统计变化检测(SDC)算法作为自动病变变化检测工具,以视觉上协助人类读者。该算法将最佳二元变化检测器应用于 2 个纵向配准的 FLAIR 图像的减法,以描绘出可能存在新病变的大脑区域。14 本研究的目的是评估在 SDC 的协助下,人类读者在受试者级别检测方面的表现是否有所改善,并与临床工作流程中操作的人类读者的基准进行比较。
变化蒙版。2、8-15 最近,基于监督深度学习的卷积神经网络模型已成为主要方法。16-20 尽管研究进展迅速,但在体素或病变水平上的检测灵敏度和特异性仍然中等(灵敏度和特异性;,0.8)。4、7 我们之前引入了统计变化检测(SDC)算法作为自动病变变化检测工具,以视觉上协助人类读者。该算法将最佳二元变化检测器应用于 2 个纵向配准的 FLAIR 图像的减法,以描绘出可能存在新病变的大脑区域。14 本研究的目的是评估在 SDC 的协助下,人类读者在受试者级别检测方面的表现是否有所改善,并与临床工作流程中操作的人类读者的基准进行比较。
摘要:临床医生和医疗保健提供组织 (HDO) 强烈要求独立于制造商的医疗设备互操作性,但几十年来一直未能实现。ISO/IEEE 11073 面向服务的设备连接 (SDC) 标准系列构成了范式转变。这项工作通过设备专业化 (DevSpecs) 或模块化规范 (ModSpecs) 补充了 SDC:针对高频 (HF) 手术设备和外部控制设备(如脚踏或手指开关)的特定互操作性标准。它们提供了在面向服务的医疗设备系统中描述这些设备的模型以及与其他网络参与者交互的模式。此外,我们还为 ISO/IEEE 11073-10101 命名标准做出了贡献,以提供交换信息的语义描述。这是实现安全有效的医疗设备互操作性的关键推动因素,以支持护理人员并提高患者安全性以及临床结果。
董事会和高级管理层的监督和角色:GC建立了一种治理结构,其中包括董事会和高级管理层级的机构,以将与可持续性和自然有关的问题整合到最高级别的业务战略和管理过程中,如图3所示。董事会级的公司治理与可持续性委员会(CGS)负责监督和审查GC的可持续发展政策和战略,涵盖与自然有关的主题,并符合国家最佳实践和国际标准。可持续发展委员会(SDC)由高级管理人员组成,该委员会控制着可持续性的战略指导,包括与自然有关的缓解行动,包括设定相关目标和完善项目投资计划。由最高级别的可持续发展执行官主持,SDC还确定了整个组织中要运营的计划,应用和测量系统。表2中总结了董事会和高级管理层治理机构的角色和职责的详细描述。
光片(HILO)激发3,用DNA-Paint 6以下达到5 nm 4,5以下的横向定位精度(S SMLM)。但是,这是以有限的穿透深度为代价的,TIR <250 nm,而Hilo 7,8的视野降低了〜40×10 µm 2。SMLM也可以在共聚焦设置中实现,包括点扫描和旋转磁盘共聚焦(SDC),这使得更深的样品渗透9,使其比较成像组织样品。图像扫描显微镜(ISM)10通过像素重新分配将共聚焦显微镜11,12的空间分辨率增加一倍,并且在与SMLM结合使用时,SMLM最近达到了8 nm的S SMLM,尽管小FOV的小FOV为8×8 µm 2 13。为了提高采集速度和FOV尺寸,SDC在旋转盘上采用数百个螺旋针孔,并与摄像机而不是单点检测器相结合。SDC构型已适用于SMLM,使用DNA-PART 14,使用DNA-Origami样品使用DNA-Origami样品达到8 nm的平面定位精度和基础平面中的细胞22 nm。仍然,由于发射光被光盘阻断,由于兴奋强度降低,可实现的分辨率仍受到限制。在2015年,Azuma及其同事提出了具有光子光子重新分配(SDC-EPR)15的增强的SDC,这是一系列微胶片,以有效降低针孔尺寸并增加光子收集,以改善分辨率。这些微漏物收缩了焦点双重,将发射的光子引导回可能的起源点(图1a)。因此,这提出了一个问题:SDC-opr的表现能否优于当前的光学配置,克服渗透深度,视野和空间分辨率之间的权衡?In this Brief Communication, we show that SMLM on a SDC- OPR fluorescence microscope can achieve sub-2 nm localization precision in the basal plane and sub-10 nm up to 7 µm penetration depth within a FOV of 53 × 53 µm 2 using a commercially available SDC-OPR (CSU-W1 SoRA Nikon system).通过可视化,以前所未有的分辨率来强调SDC-OPR的功能,在果蝇的视觉想象盘的视网膜上皮中的附着力连接。
1 简介 1 1.1 概述 1 1.1.1 软错误的证据 2 1.1.2 软错误的类型 3 1.1.3 减轻软错误影响的经济有效的解决方案 4 1.2 故障 6 1.3 错误 7 1.4 指标 9 1.5 可靠性模型 11 1.5.1 可靠性 12 1.5.2 可用性 13 1.5.3 其他模型 13 1.6 互补金属氧化物半导体技术中的永久性故障 14 1.6.1 金属故障模式 15 1.6.2 栅极氧化物故障模式 17 1.7 CMOS 晶体管中的辐射诱发瞬态故障 20 1.7.1 阿尔法粒子 20 1.7.2 中子 21 1.7.3 阿尔法粒子和中子与硅晶体的相互作用 26 1.8 阿尔法粒子和中子撞击的架构故障模型 30 1.9 静默数据损坏和检测到的不可恢复错误 32 1.9.1 基本定义:SDC 和 DUE 32 1.9.2 SDC 和 DUE 预算 34