现代化:为了提高地下矿山的现代化和机械化水平,在56号NOS中引入了通过部署LHD/SDL的中级技术。地雷。 截至31.03.2024,202 nos。 SDLS,37号。 LHD和137号。 UDM的在不同的地下矿山中正在滚动(包括初始测量设备)。在2023-24中,SDLS的生产为3.125吨,LHDS的lhds为0.642 MT,来自2个NOS。 HighWall为0.728吨,从1号。 ROAD标头(Longwall套件的一部分)为0.015吨。 通过部署连续矿工与航天飞机(11套套装)结合使用的“大众生产技术”已在Jhanjra,Sarpi,Kumardih-B UG,Khottadih UG和Tilaboni Projects部署,并正在成功运行。 在2023-24期间从5个NOS实现的生产。 标准高度连续矿工和6个NOS的。 低高度连续矿工为4.127吨。 在Jhanjra,Longwall Technology自2016年8月以来成功运行,2023-24期间的生产为0.557 MT(不包括Road Header)。 2023-24期间的总体地下煤生产是9.183吨。地雷。截至31.03.2024,202 nos。SDLS,37号。 LHD和137号。 UDM的在不同的地下矿山中正在滚动(包括初始测量设备)。在2023-24中,SDLS的生产为3.125吨,LHDS的lhds为0.642 MT,来自2个NOS。 HighWall为0.728吨,从1号。 ROAD标头(Longwall套件的一部分)为0.015吨。 通过部署连续矿工与航天飞机(11套套装)结合使用的“大众生产技术”已在Jhanjra,Sarpi,Kumardih-B UG,Khottadih UG和Tilaboni Projects部署,并正在成功运行。 在2023-24期间从5个NOS实现的生产。 标准高度连续矿工和6个NOS的。 低高度连续矿工为4.127吨。 在Jhanjra,Longwall Technology自2016年8月以来成功运行,2023-24期间的生产为0.557 MT(不包括Road Header)。 2023-24期间的总体地下煤生产是9.183吨。SDLS,37号。LHD和137号。 UDM的在不同的地下矿山中正在滚动(包括初始测量设备)。在2023-24中,SDLS的生产为3.125吨,LHDS的lhds为0.642 MT,来自2个NOS。 HighWall为0.728吨,从1号。 ROAD标头(Longwall套件的一部分)为0.015吨。 通过部署连续矿工与航天飞机(11套套装)结合使用的“大众生产技术”已在Jhanjra,Sarpi,Kumardih-B UG,Khottadih UG和Tilaboni Projects部署,并正在成功运行。 在2023-24期间从5个NOS实现的生产。 标准高度连续矿工和6个NOS的。 低高度连续矿工为4.127吨。 在Jhanjra,Longwall Technology自2016年8月以来成功运行,2023-24期间的生产为0.557 MT(不包括Road Header)。 2023-24期间的总体地下煤生产是9.183吨。LHD和137号。在不同的地下矿山中正在滚动(包括初始测量设备)。在2023-24中,SDLS的生产为3.125吨,LHDS的lhds为0.642 MT,来自2个NOS。HighWall为0.728吨,从1号。ROAD标头(Longwall套件的一部分)为0.015吨。 通过部署连续矿工与航天飞机(11套套装)结合使用的“大众生产技术”已在Jhanjra,Sarpi,Kumardih-B UG,Khottadih UG和Tilaboni Projects部署,并正在成功运行。 在2023-24期间从5个NOS实现的生产。 标准高度连续矿工和6个NOS的。 低高度连续矿工为4.127吨。 在Jhanjra,Longwall Technology自2016年8月以来成功运行,2023-24期间的生产为0.557 MT(不包括Road Header)。 2023-24期间的总体地下煤生产是9.183吨。ROAD标头(Longwall套件的一部分)为0.015吨。通过部署连续矿工与航天飞机(11套套装)结合使用的“大众生产技术”已在Jhanjra,Sarpi,Kumardih-B UG,Khottadih UG和Tilaboni Projects部署,并正在成功运行。在2023-24期间从5个NOS实现的生产。。低高度连续矿工为4.127吨。在Jhanjra,Longwall Technology自2016年8月以来成功运行,2023-24期间的生产为0.557 MT(不包括Road Header)。2023-24期间的总体地下煤生产是9.183吨。
多伦多大学的加速联盟 (AC) 正在引领科学发现的变革,这将加速技术开发和商业化。AC 是一个由学术界、工业界和政府组成的全球社区,它利用人工智能、机器人技术、材料科学和高通量化学的力量来创建自动驾驶实验室。这些自主实验室快速设计可持续、健康和有弹性的未来所需的材料和分子,应用范围从可再生能源和消费电子产品到药物。AC SDL 将推动人工智能驱动的自主发现领域,并开发应对社会最大挑战所需的材料和分子,例如气候变化、水污染和未来的流行病。
• 62 DMIPS 和 17 MFLOPS @ 72MHz • 256Kbytes EEPROM 用于启动软件,6 MB 用于应用软件,256MB 程序 RAM 内存 • 2GB 交换内存 • 2 个冗余 MIL STD 1553 总线或可选 2 个 CAN,用于平台和有效载荷管理 • 2 个 SpaceWire 链路 • 符合 ESA 标准的 CCSDS 遥测和遥控 • 符合 SDLS 标准的安全功能 • 温和冗余,自定义重新配置功能:最多 8 个可编程场景可用于硬件重新配置 • 完全冗余架构带来高可靠性 - 2 个处理器板和 2 个 DC/DC 转换器板,每个通道 1500 个接头 - 处理器板之间有完整的功能交叉带 • 架构为 I/O 提供了一个单独的盒子,通过 1553、CAN 或 SpaceWire 进行控制 • 用于软件开发和调试的 UART 和 Space Wire 链路
可能的方法——扩大范围并通过引起政策制定者更多兴趣和利用更多资金来加速工作。除了工业 4.0 的整合之外,先进材料开发的新趋势还包括人工智能 (AI)、高性能计算和所谓的“材料加速平台”(MAP) 或“自动驾驶实验室”(SDL) 中的智能机器人自动化,这些趋势正在迅速加快这一进程并改变发现和设计用于不同应用的新材料的方式。人工智能和先进材料数据共享方面的合作正在带来技术创新,从而改善改变整个经济体所需材料的生命周期、成本、可持续性和性能。与 MAP 相关的项目已经开发出强大的数据共享结构,可以作为进一步开发的基础,例如安全有效地交换相关和必要数据的通用平台。