但是,如果创新更多的是在标准之上实施和增值,那么主要的兴趣就是让技术得到广泛采用,因此 RF 是主要的许可模式。如上所述,当涉及到标准化和开源项目的关系时,RF 许可的可用性非常有利。因此,FRAND 条款通常被视为与开源许可的条款和条件不相容,因此,许多全球领先的 SDO 2 都在市场上建立了免版税政策,允许在开源中不受阻碍地实施开放标准。另一个需要考虑的方面是创新发生在哪里。软件行业热切地接受了开源,对于许多组织来说,开源已经成为他们创新的主要场所之一,从单一的内部创新转向标准机构本身的创新。在这些情况下,开放的协作创新发生在标准化之前,RF 是软件标准开发的唯一明智选择。
随着 2023 年发布的多款人工智能和机器学习 (AI/ML) 应用程序,所有工业部门对使用这些新工具的兴趣日益浓厚。AI/ML 有可能自动执行许多以前只能通过人工手动完成的任务,并利用许多大型和不同的数据源释放新功能。然而,AI/ML 的使用带来了新的威胁,这在现有应用程序中很明显。作为一个生命周期长、变化速度慢的安全关键行业,AI/ML 应仅在采取适当的保护措施的情况下部署。虽然标准开发组织 (SDO) 正在制定实施 AI/ML 的标准,以防止无意错误,但目前的工作并未考虑防止故意错误和对 AI/ML 的攻击。相关工作组必须立即纳入网络安全考虑因素,以便 AI/ML 认证标准的第一个版本可以批准在航空领域安全实施和部署 AI/ML。
您如何看待 NIST 的一些标准活动?您认为政府在协调或执行方面做得好还是不好?美国的独特之处在于它由私营部门主导。联邦政府不控制美国标准的制定。NIST 为私营部门参与标准制定提供技术专业知识和支持。这并不意味着我们不能发挥领导作用。NIST 倾向于开放、透明、参与性强且在实际范围内免费的标准制定。并非所有标准组织都可以使用所有免费标准。标准制定组织 (SDO) 通常会对其制定的标准收费,我们尽量确保他们收取的费用尽可能低。广义上讲,美国和物联网领域的标准开发由 ANSI 协调。我们参与了 ISO 组织。标准开发很重要,但也是一个非常神秘的过程。它需要判断力、政治技能、人际交往能力、说服力和妥协。有传闻证据表明,美国在国际标准领域的影响力可能会受到削弱。NIST 仍然深度参与 4G 和 5G 的安全标准开发。
JETI 的任务是作为 JTC 1 中的技术观察小组,寻求机会促进 JTC 1 未来新兴和创新技术的标准制定。ISO/IEC JTC 1/AG 2 JETI 通过市场研究报告、JTC 1 SCs 的商业计划信息以及其他 SDO 进行信息收集,并编制一份技术清单。然后,通过对 JTC 1 国家机构和 JTC 1 SCs/WGs/AGs 进行内部调查,将该清单中列出的顶级技术进行优先排序。然后,咨询小组对调查答复进行分析,以提出编写技术趋势报告 (TTR) 的建议。TTR 是 JETI 向 JTC 1 提交的关于特定技术主题的报告,供标准制定时考虑,其中包括一套供 JTC 1 采取行动的强有力的建议,然后在下次 JTC 1 全体会议上进行审查。这一过程使 ISO/IEC JTC 1 能够确定新兴技术的标准化或协调/协作需求,并在适当的时间启动标准项目。 TTR 通常包括相关的当前标准化活动(如果适用)、任何标准差距以及对 JTC 1 的建议。
直到第 7 层的各层都必须由应用程序的附加服务进行管理。各种标准化的更高层协议(如 CANopen)都已发布并广泛应用于工业应用中。为了便于遵守 RTCA/DO-178 [3] 指南,没有选择通用的高层协议,而是开发了一种特定类型的应用层协议,并记录在系统接口文档 [2] 中。对通信需求的分析产生了以下协议要求:• 网络上的每个烟雾探测器都必须具有唯一性• 烟雾探测器生成的消息必须包含有关其身份的信息• 支持主从通信模型 CAN 标识符使用 29 位扩展标识符,并分成如图 3 所示的子字段。消息类型消息类型的目的在于根据消息的总体相对优先级对其进行分类,并指示模块 ID 是包含发送器地址还是接收器地址。两类消息类型、过程数据对象 (PDO) 和服务数据对象 (SDO) 被实例化为发送或接收对象;分别为 T_PDO 和 R_PDO 以及 T_SDO 和 R_SDO。发送数据对象 (T_xDO) 表示模块 ID 包含发送器的网络地址,而接收数据对象 (R_xDO) 则在模块 ID 字段中包含目标接收器的网络地址。
直到第 7 层的各层都必须由应用程序的附加服务进行管理。各种标准化的更高层协议(如 CANopen)都已发布并广泛应用于工业应用中。为了便于遵守 RTCA/DO-178 [3] 指南,没有选择通用的高层协议,而是开发了一种特定类型的应用层协议,并记录在系统接口文档 [2] 中。对通信需求的分析产生了以下协议要求:• 网络上的每个烟雾探测器都必须具有唯一性• 烟雾探测器生成的消息必须包含有关其身份的信息• 支持主从通信模型 CAN 标识符使用 29 位扩展标识符,并分成如图 3 所示的子字段。消息类型消息类型的目的在于根据消息的总体相对优先级对其进行分类,并指示模块 ID 是包含发送器地址还是接收器地址。两类消息类型、过程数据对象 (PDO) 和服务数据对象 (SDO) 被实例化为发送或接收对象;分别为 T_PDO 和 R_PDO 以及 T_SDO 和 R_SDO。发送数据对象 (T_xDO) 表示模块 ID 包含发送器的网络地址,而接收数据对象 (R_xDO) 则在模块 ID 字段中包含目标接收器的网络地址。
直到第 7 层的各层都必须由应用程序的附加服务进行管理。各种标准化的更高层协议(如 CANopen)都已发布并广泛应用于工业应用中。为了便于遵守 RTCA/DO-178 [3] 指南,没有选择通用的高层协议,而是开发了一种特定类型的应用层协议,并记录在系统接口文档 [2] 中。对通信需求的分析产生了以下协议要求:• 网络上的每个烟雾探测器都必须具有唯一性• 烟雾探测器生成的消息必须包含有关其身份的信息• 支持主从通信模型 CAN 标识符使用 29 位扩展标识符,并分成如图 3 所示的子字段。消息类型消息类型的目的在于根据消息的总体相对优先级对其进行分类,并指示模块 ID 是包含发送器地址还是接收器地址。两类消息类型、过程数据对象 (PDO) 和服务数据对象 (SDO) 被实例化为发送或接收对象;分别为 T_PDO 和 R_PDO 以及 T_SDO 和 R_SDO。发送数据对象 (T_xDO) 表示模块 ID 包含发送器的网络地址,而接收数据对象 (R_xDO) 则在模块 ID 字段中包含目标接收器的网络地址。
无人机系统 (UAS) 已在民用领域使用多年。无人机系统规则制定联合机构 (JARUS) 开发了一种新的基于风险的审批方法,该方法依赖于特定类别的所谓特定操作风险评估 (SORA)。操作授权基于使用 SORA 流程的评估,该流程评估操作的安全性,而不仅仅是飞机设计。但是,为了遵守由此产生的缓解措施,必须说服当局使用“可接受的合规手段”(AMC)。欧洲研究项目“AW-Drones”的目标是确定和评估现有标准,作为现有和即将出台的法规的可能 AMC。“AW-Drones” 的研究由一个由工业和研究机构组成的国际联盟进行。其他利益相关者支持该项目,包括欧洲航空安全局 (EASA) 和其他专家组、委员会和标准开发组织 (SDO)。本文介绍了识别 SORA 可能的 AMC 的方法和方法,包括当前的工作状态。概述了数据收集步骤和评估的结果。显示了所使用的标准并讨论了对 SORA 过程的影响。展望将详细介绍剩余的任务。介绍了在公共数据库中传播工作,该数据库将 AMC 评估结果直接提供给无人机操作员。
在ISO和ETSI中进行操作,实际上预计在2022年初预计标准。OpenQKD有特定的活动,以推动和支持评估和认证流程的建立,包括涉及商业评估实验室和NA的认证机构,以增强该领域的积极前景。•此外,对特定QKD组件的规范和评估指南,例如QKD发射器和接收器模块需要提供 - 在OpenQKD项目中还解决了此差距,该差距将提供项目文件以告知这些工作项目,并启动各自的标准化活动。•在QKD网络领域,存在两个级别:在网络互动级别上(QKD集成到现有的光纤基础架构中,密钥输送接口,网络控制,QKD生成的密钥与加密解决方案的集成)以及网络的安全性级别。差距,关于网络安全性的差距也在ITU-T开始,但是QKD Net-Net-Work标准的重要性得到了广泛认可,并且可以合理地预期其他SDO的进一步活动。•在卫星模块和网络领域,正在进行早期开发,但没有可观的组件和互操作性标准,例如可用于光学接地接收器或卫星光学终端。仍然需要解决空间网络和纤维结合的地面网络的互操作性标准。
上下文。太阳通过发射能量和电磁辐射在太空天气中起着重要作用,这些辐射影响着地球周围的环境。诸如SOHO,立体声和SDO之类的任务在多个波长下捕获了太阳观测,以监视和预测太阳事件。但是,这些任务的数据传输通常受到限制,特别是对于那些在距地球较远的距离的人来说。这限制了连续观察的可用性。目标。我们增加了太阳图像的空间和时间分辨率,以提高太阳能数据的质量和可用性。通过对遥测约束进行构造并提供更详细的太阳图像重建,我们试图促进对太阳能动态的更准确分析并改善太空天气预测。方法。我们特别采用了基于UNET的体系结构的深度学习技术来生成高分辨率的太阳图像,从而增强了太阳结构的复杂细节。此外,我们使用类似的体系结构来重建具有降低时间分辨率的太阳图像序列,以预测缺失的帧和恢复时间连续性。结果。我们的深度学习方法成功增强了太阳图像的分辨率,并揭示了太阳结构的详细信息。该模型还预测了太阳图像序列中缺失的帧,尽管遥测限制了,但尽管有遥测限制,从而可以更连续观察。这些进步有助于更好地分析太阳能动态,并为改善空间天气预报和未来的太阳能物理学研究奠定了基础。