多年来,专业摄像机中的图像传感器能够捕捉比 Rec. 709 更多的色彩和更高的动态范围。这些摄像机使用内部图像处理将输出色域和动态范围限制在广播行业标准 Rec. 709 范围内。最近,许多专业摄像机都采用了“log”、RAW 和 HLG 录制格式,这些格式既可以包含比 Rec. 709 色域更宽的色彩范围,又可以包含比 SDR 显示器上显示的更高的动态范围。随着 iPhone 12 及更高版本以杜比视界录制,HDR 捕捉不再仅限于专业摄像机的领域。
人工智能无线电收发器 (AIR-T) 是一种高性能软件定义无线电 (SDR),与最先进的处理和深度学习推理硬件无缝集成。嵌入式图形处理单元 (GPU) 的加入使得实时宽带数字信号处理 (DSP) 算法可以在软件中执行,而无需专门的现场可编程门阵列 (FPGA) 固件开发。GPU 是机器学习中最常用的处理器,因此 AIR-T 大大降低了工程师创建自主信号识别、干扰缓解和许多其他机器学习应用的障碍。通过授予深度学习算法对收发器系统的完全控制权,AIR-T 允许完全自主的软件定义和认知无线电。
印度的许多政府和商业项目都在最复杂和最苛刻的条件下(如空中、海上和陆地防御应用)需要高性能的系统中采用 Rakon 产品。具体应用包括稳定本地振荡器 (STALO)、地面/空中雷达 Tx/Rx 模块、相干振荡器 (CO)、雷达 Rx 的主振荡器、主参考振荡器 (MRO)、敌我识别 (IFF) 雷达、军用交换设备、航空电子设备(商用和军用)、空中航线监视雷达 (ARSR)、机载软件定义 p (SDR) 和合成器参考。Rakon India 的国防产品符合 MIL 标准,并符合“印度制造”计划。
摘要 - 已引入了一种新的生成模型,基于扩散的生成模型(DGM),以增强语音。语音增强的有效性取决于各种因素,例如信噪比和噪声类型。在无法获得干净的参考信号的实际情况下,希望监视语音增强方法的有效性。本研究仅使用增强的语音信号调查了基于DGM的语音增强有效性的可能性。它提出了通过采用多个增强信号的相对差异的倒数来估计增强语音信号的标准不变信号渗透率。索引术语 - 言语增强,基于扩散的生成模型,增强语音信号的逆相对差异,si-sdr
无线电操作员使用摩尔斯电码通过船上唯一的无线电进行通信的时代已经一去不复返了。当今的军舰配备了最先进的指挥中心,配备了用于船上和外部通信的复杂设施。这些通信系统必须确保可靠、抗干扰和加密的信息交换,特别是在军事紧急情况下。互操作性继续发挥着关键作用,而不仅仅是在一个国家武装部队的各个部门之间。它也是联合行动和和平伙伴关系 (PfP) 任务的先决条件。随着网络中心行动变得越来越重要,对标准化语音和数据通信协议以及先进的软件定义无线电 (SDR) 的需求也日益增长。军事信息对于任务成功尤其重要。
2.1 时域和频域 19 2.1.1 傅里叶变换 20 2.1.2 DFT 的周期性 21 2.1.3 快速傅里叶变换 22 2.2 采样理论 23 2.2.1 均匀采样 23 2.2.2 均匀采样的频域表示 25 2.2.3 奈奎斯特采样定理 26 2.2.4 奈奎斯特区 29 2.2.5 采样率转换 29 2.3 信号表示 37 2.3.1 频率转换 38 2.3.2 虚信号 40 2.4 信号指标和可视化 41 2.4.1 SINAD、ENOB、SNR、THD、THD + N 和 SFDR 42 2.4.2 眼图 44 2.5 SDR 的接收技术 45 2.5.1 奈奎斯特区域 47 2.5.2 定点量化 49
我们演示了一个由传感器、应用程序和云基础设施组成的多光谱成像平台“超成像仪”。传感器包括 60GHz 的 3D 雷达系统、红外和可见域信息。该系统能够捕获可以利用每个域优势的多光谱图像。我们还演示了使用 IBM 软件定义相控阵无线电 (SDPAR) 的联合通信和 3D 传感应用。SDPAR 使用最先进的 28GHz 64 元件相控阵与 SDR 和通用 API 结合使用,以简化使用相控阵的应用程序的系统开发。通过使用已用于通信的 OFDM 波形进行飞行时间测量,可以实现 3D 传感。通过跨时间拼接 100MHz 宽的数据包,可以获得总共 1GHz 的传感带宽。这种联合传感通信不会影响底层通信带宽。
1 全身和脑部 MRI 检查每年进行一次,间隔六个月。乳房 MRI 检查(造影剂和非造影剂)应与脑部 MRI 检查同时进行(但由于造影剂剂量不同,应在不同日期进行)。 2 第一次脑部 MRI 检查应使用钆帕西诺进行造影剂和非造影剂检查;如果正常,则应随后进行非造影剂脑部 MRI 检查。如果患者有恶性肿瘤病史,则所有脑部 MRI 检查都应进行造影剂和非造影剂检查。 3 对于患侧有 PDAC 家族史的患者[1 名一级亲属 (FDR) 或 1 名二级亲属 (SDR)],请参阅胰腺癌筛查算法临床效果部 V4 经医务人员执行委员会于 2024 年 12 月 17 日批准
SD/MMC 主机接口 (SDHI) SDHI 和 MultiMediaCard (MMC) 接口模块提供将各种外部存储卡连接到 MCU 所需的功能。SDHI 支持 1 位和 4 位总线,用于连接支持 SD、SDHC 和 SDXC 格式的存储卡。开发符合 SD 规范的主机设备时,必须遵守 SD 主机/辅助产品许可协议 (SD HALA)。MMC 接口支持 1 位、4 位和 8 位 MMC 总线,可提供 eMMC 4.51(JEDEC 标准 JESD 84-B451)设备访问。此接口还提供向后兼容性并支持高速 SDR 传输模式。请参阅用户手册中的第 41 节 SD/MMC 主机接口 (SDHI)。
CACI 的专业多任务 DemoSat 有效载荷将测试该公司在有争议的太空领域在精确替代定位、导航和授时 (APNT) 和战术情报、监视和侦察 (TacISR) 技术方面的技术进步。我们的双向时间传输 (TWTT) 和时钟建模技术是 DemoSat 有效载荷的核心,体现了小型平台同步能力的飞跃。SPOTS DemoSat APNT 和 TWTT 技术无需昂贵的时间参考或时间同步性能妥协,即可提供精确的授时和长期的频率稳定性。SPOTS 还配备了软件定义无线电 (SDR),可运行低概率拦截/检测 (LPI/D) 和频率捷变扩频射频 (RF) 波形。SPOTS 有效载荷也与时钟/振荡器技术无关,可以扩展以支持多时钟组合。