##电子邮件:sh315@cam.ac.uk,jaa59@cam.ac.uk抽象扭曲的双层石墨烯提供了一个理想的固态模型,可探索相关的材料属性和机会,用于各种光电应用程序,但可靠,可靠的快速,快速的扭曲角度表征仍然是一个挑战。在这里,我们引入光谱椭圆测量对比度显微镜(SECM),作为在光学共振的扭曲双层石墨烯中绘制扭曲角度障碍的工具。我们优化了椭圆角,以根据入射光的测量和计算的反射系数增强图像对比度。与Van Hove奇异性相关的光谐振与拉曼和角度分辨光电发射光谱良好相关,证实了SECM的准确性。结果强调了SECM的优势,这被证明是在大面积上表征扭曲的双层石墨烯,解锁过程,材料和设备筛选以及双层和多层材料的交叉相关测量潜力的快速,无破坏性方法。
二维(2D)材料中的摘要研究兴趣由于其独特而引人入胜的特性而导致了指数增长。高度裸露的晶格平面以及2D材料的可调电子状态在设计新平台上为能量转换和传感应用的新平台创造了流动机会。仍然,理解这些材料的电化学(EC)特征的挑战是源于固有和外在异质性的复杂性,这些异质性可能会掩盖结构 - 活性相关性。扫描EC探针显微镜调查在揭示纳米级级别的局部EC重新激素方面提供了独特的好处,而纳米级级别则无法使用宏观方法。本综述总结了应用扫描EC显微镜(SECM)和扫描EC细胞显微镜(SECCM)的最新进展,以获得对2D电极基本面的独特见解。我们展示了EC显微镜在解决缺陷,厚度,环境,应变,相位,堆叠和许多其他方面的功能,以及代表性2D材料及其衍生物及其衍生物的光电化学。对扫描EC探针显微镜调查的优势,挑战和未来机会的观点进行了讨论。
摘要:硅是一种有希望的下一代阳极,可在商业石墨阳极上增加能量密度,但日历寿命仍然有问题。在这项工作中,使用扫描电化学显微镜来跟踪硅薄膜表面随时间表面的位点特异性反应性,以确定在形成的固体电解质相位相(SEI)(SEI)是否发生了不良的法拉达反应(SEI),在日历中,在四个情况下,在四个情况下,在1.5 v和100 mV之间的形式和1.1的形成(1)。 V和100 mV,随后的休息从(3)0.75 V和(4)100 mV开始。在所有情况下,硅的电钝化在3天的时间内随时间和潜力的增加而降低。随着钝化的减少,在500μm2面积上钝化的均匀性随时间降低。尽管反应性有一些局部“热点”,但钝化的面积均匀性表明全局SEI失败(例如,SEI溶解),而不是局部化(例如,破裂)失败。The silicon delithiated to 1.5 V vs Li/Li + was less passivated than the lithiated silicon (at the beginning of rest, the forward rate constants, k f , for ferrocene redox were 7.19 × 10 − 5 and 3.17 × 10 − 7 m/s, respectively) and was also found to be more reactive than the pristine silicon surface ( k f of 5 × 10 − 5 m/s).这种反应性可能是SEI氧化的结果。仅将细胞与li/li +截然不同时,表面仍在钝化(k f为6.11×10-6 m/s),但仍然比岩性表面(k f的3.03×10-9 m/s)少。这表明阳极的电势应保持在或低于〜0.75 v vs li/li +以防止SEI钝化。此信息将有助于调整电压窗口,以进行SI Half Half细胞和SI完整单元的操作电压以优化日历寿命。所提供的结果应鼓励研究界在日历老化期间研究化学而不是机械的故障模式,并停止使用1.5 V的典型惯例作为半细胞中循环SI的截止潜力。关键字:日历老化,硅,电池,SECM,钝化,SEI■简介