我们的军事系统严重依赖其内部的微系统。几十年来,DARPA 一直致力于研究,以提高这些技术的性能。这有助于工程师提供越来越多的紧凑型设备和便携式平台,以支持国防训练和行动。随着军事能力的发展,对这些微电子器件的要求也在不断提高——从以更高的频率运行到在单个芯片上集成数十亿个晶体管。在过去的二十年里,特别是过去两年的电子复兴计划,DARPA 在电子研发方面投入了大量资金,以发现能够实现更高性能和功能的新材料和设计。硅长期以来一直是微电子器件的标准半导体材料,现在仍然是大量商业和国防应用的标准材料。然而,硅可以提供多少性能的理论极限——特别是对于以更高功率和频率运行的系统——在实践中正在达到。这一长期存在的现实检验推动了对替代半导体技术的探索。
与上一代无线网络架构升级一样,真正的独立 (SA) 5G 将需要新的核心网络以及新的无线接入网络 (RAN)。我们展示了最有可能立即实现的迁移路径,即 NSA 选项 3a,它允许移动运营商在利用现有 4G 核心网络的同时构建新的 5G RAN。这将在短期内为网络运营商节省成本,同时允许初步部署 5G 网络服务。最终,我们相信移动网络将发展为 SA 选项 1/2 架构,其中有两个截然不同的独立移动网络,相互叠加。要充分利用 5G 的 uRLLC 和 mMTC 技术,必须构建一个单独的核心网络。短期内,非独立 5G 仍将是全球 5G 部署的主要版本。
Sohrab Aftabjahani,英特尔 Ameen Akel,美光 Robert Boland,BAE 系统 Jeff Burns,IBM* Rosario Cammarota,高通* Jon Candelaria,SRC Gary Carpenter,ARM C.-P. Chang,应用材料 An Chen,IBM* Ching-Tzu Chen,IBM* Michael Chen,Mentor Graphics Paula Collins,德州仪器 Ken Curewitz,美光 Scott DeBoer,美光 Robert Doering,德州仪器 Sean Eilert,美光 Rich Fackenthal,美光 Mike Fitelson,诺斯罗普·格鲁曼 Patrick Groeneveld – 新思科技 James Hannon,IBM* Ken Hansen,SRC Daryl Hatano,安森美半导体 C.-M. Hung,联发科 David Isaacs,SIA Clas Jacobson,联合技术公司 Steve Johnston,英特尔 Lisa Jones,诺斯罗普·格鲁曼公司 Marc Joye,恩智浦 Ravi Kanjolia,EMD Performance Materials Thomas Kazior,雷神公司 Taffy Kingscott,IBM Curt Kolovson,VMWare Steve Kramer,美光* Zoran Krivokapic,格罗方德半导体 Ming-Ren Lin,格罗方德半导体* Yu-Ming Lin,台积电 Scott List,SRC
由于碳浓度对于高功率器件至关重要,因此这些晶体是通过更复杂的垂直浮区工艺生长的。砷化镓主要用于光通信和显示器,以及即将在微电子(高速 FET 和 HEMT 器件)和功率器件(FET 阵列)中应用,到目前为止,砷化镓还无法在商业上生长到所需的质量。通过掺杂和减小生长过程中的温度梯度(液体封装的 Czochralski IILEC“和水平 Bridgman“舟式生长”),位错问题已有所缓解。然而,腐蚀坑密度 (EPD) 小于 * 10 3 cm- 2 的 GaAs 晶体尚未实现商业化,典型的 EPD 在 10 4 和 10 5 cm- 2 之间 • GaAs 的其他问题包括非化学计量、非均匀性。漩涡状缺陷。深能级缺陷 EL2,以及实现用于高速设备的半绝缘材料(没有高度扩散的补偿铬)所需的纯度。人们普遍希望 GaAs 也可以通过 Czochralski 工艺经济地生产(产生首选的圆形晶片而不是 Bridgman 工艺的 D 形晶片)。并且上述大多数问题可以通过适当调整生长参数来解决。一个重要的切克劳斯基生长中最重要的参数是对流,它决定了均匀性和涡流状和 EL2 缺陷的分布(和数量?)。下文将描述切克劳斯基过程中的各种对流方式,并介绍最有希望优化切克劳斯基熔体对流条件的方法。
表 2 显示了 1995 年 1 月 1 日(“1095”)至 1996 年 6 月 30 日(“2096”)期间宣布的美国和世界其他地区工厂的计划建设时间表。我们预计,随着新工厂产能的建设,半导体行业的电力需求将大幅增加。如表 2 所示,对于 1095 - 2096 年宣布的工厂,预计全球增量可能超过 5000 兆瓦。在典型的 90% 负载率下,工厂产能的增加将导致每年增加约 40,000 千兆瓦时的电力销售。然而,由于 1996 年半导体市场状况疲软,这些工厂的建设时间表趋于推迟。更新的时间表信息尚未提供。