此参考设计显示了单端主电感转换器(SEPIC)转换器的降压功能的使用。由于输入和输出由电容器分开,因此该拓扑可用于为电池充电带有可变V的电池以及可变V OUT。使用同步峰值电流模式控制器LM5122;该IC可以通过级别移动(RCD网络)驱动高侧同步FET。通过将9-V至36-V输入施加,该板可用于为两个电压范围为8 V至28 V,最大2-A充电电流或简单用作标准的恒定电压电源。输出电压和电流的两个设定点都是通过两个修剪器定义的,即使两个参考文献也可以通过使用两个数字到Analog转换器来代替。
摘要 - 本文介绍了用于电动汽车电池充电应用的单端初级电感转换器 (SEPIC) 的设计和仿真。SEPIC 转换器是一种 DC-DC 转换器,旨在提供稳定的输出电压,同时适应各种输入电压。SEPIC 转换器以其高效率和高可靠性而闻名,可以将输出电压调节为高于或低于输入电压。DC-DC 转换器因其低输出电压纹波和高效率而特别吸引研究人员,使其成为需要低噪声和高功率密度的应用的理想选择。DC-DC 转换器性能和可靠性的不断进步对于满足现代技术日益增长的需求至关重要。SEPIC 转换器与降压-升压转换器有相似之处,结合了降压和升压功能,具有输入和输出电压极性相同、效率高以及输出侧和输入侧之间电容隔离等优点。本文使用 MATLAB 软件对开环和闭环配置中的 SEPIC 转换器进行了仿真,并进行了介绍。
Dr DSNM RAO Dr M.Jasmin Dr Megha Pandey Muntather Almusawi Ghazi Mohamad RAMADAN,6 R. Senthil kumar 1 印度,特伦甘纳邦,海得拉巴,Bachupally,GRIET 电子电气工程系。 2 副教授,新 Prince Shri Bhavani 工程技术学院,钦奈 3 助理教授,商学院,CHRIST(视为大学),班加罗尔 4 计算机技术工程系,技术工程学院,伊斯兰大学,纳杰夫,伊拉克,计算机技术工程系,技术工程学院,迪瓦尼亚伊斯兰大学,迪瓦尼亚,伊拉克,计算机技术工程系,巴比伦伊斯兰大学,技术工程学院,巴比伦,伊拉克 5 阿尔拜特大学 MLT 学院,卡尔巴拉,伊拉克印度 泰米尔纳德邦 Sivakasi AAA 工程技术学院教授
(1)当输入电压小于6 V时,驱动引脚电压V DR等于输入电压。当输入电压大于或等于6 V时,V DR等于6V。(2)对于此测试,使用40-KΩ电阻将FA/SYNC/SND PIN拉到接地。(3)对于此测试,使用40kΩ电阻将FA/Sync/SD引脚拉到3 V。(4)针对反馈电压指定了过电压保护。这是因为过电压保护跟踪反馈电压。可以通过将反馈电压(v fb)添加到过电压保护规范中来计算过电压阈值。(5)应将FA/Sync/SD引脚拔出高高的电阻器以关闭调节器。FA/SYNC/SD引脚上的电压必须高于输出的最大限制=高于30 µs的最大限制,以保持调节器关闭,并且必须低于输出的最小限制=低=低才能保持调节器的启动。
与第一个报价有关的风险这是我们公司的第一个公开股票股票,股票股票没有正式市场。每个权益份额的面值为₹10。地板价格,上限价格和要约价格(由我们公司与书籍的牵头经理协商确定),并根据按书本建设过程的方式评估对公益股份的市场需求,如第129页的“要约价格基础”中所述,不应按照SEBI ICDR规定,不应按照SEPIC DIS的公平股份来表示公平性的公平性股份。对于股票股票的积极或持续交易或上市后交易股权交易的价格,没有任何保证。
摘要:根据不断扩大的环境问题和不断加强的排放法规,已经研究了电动汽车作为一种运输形式的有效性。电动汽车电池充电器拓扑对于增加电动汽车(EV)的使用至关重要。该研究的电动汽车上的板载电池电池充电器支持SEPIC,谐振逆变器或LLC拓扑,适用于带有48V电池组的附近电动型自行车。为了获得最少的电网电流纹波,还建议使用自适应DC链路电压技术来实现所有电压条件下适当的DC链路电压。充电器还采用了电压同步策略,以确保网格连接和独立模式之间的无缝模式过渡。MATLAB/SIMULINK用于模拟和验证车载充电器。
电力电子学的基本概念和 4 种不同的转换器类型,由二极管、晶闸管、GTO、MCT、IGBT 和 MOSFET 组成的功率开关的分析,功率和能量方程,参数瞬时值和平均值的计算,电路中线圈和电容器的行为以及有功和无功功率值,非线性源和负载的电路分析以及功率值的计算,THD 和失真因数的解释和计算,非线性负载中整流器的性能分析和方程,CCM 和 DCM 工作模式下 DA-DA 降压转换器的分析,CCM 和 DCM 工作模式下 DA-DA 升压转换器的分析,CCM 和 DCM 工作模式下 DA-DA 降压-升压转换器的分析,Sepic 和 Cuk 转换器的分析,半桥逆变器,全桥逆变器,逆变器对线性和非线性负载的性能分析和检查,AC-AC 转换器,目的和方法。
线性稳压器的基本结构、优点和缺点;基本 DC-DC 转换器(降压、升压、降压-升压)的稳态分析;衍生 DC-DC(Cuk、SEPIC、二次)转换器的稳态分析。变压器隔离 DC-DC 转换器(正向、反激、推挽、桥式)的稳态分析;开关模式稳压器规格、框图、建模方法、假设和近似值。CCM 和 DCM 模式下硬开关转换器的动态模型和传递函数。稳压器设计示例:电流编程转换器、框图、稳定性、建模和传递函数。单相 PFC 电路。谐振转换器,软开关原理:ZVS、ZCS、ZVZCS 谐振负载转换器:变频串联和并联谐振转换器(谐振开关转换器(准谐振):半波和全波操作和控制。谐振过渡相位调制转换器,降低 VA 额定值,固定频率操作以及设备和变压器非理想性的有利用途;软开关双向 DC-DC 转换器(双有源桥):在降压模式和升压模式下进行软开关,带或不带有源钳位 PWM 转换器(带辅助开关)、ZVT/ZCT PWM 转换器:带辅助开关的隔离和非隔离拓扑;辅助谐振换向极逆变器:用于逆变器的 ZVT 和 ZCT 概念;谐振直流链路逆变器:通过辅助开关强制振荡直流链路电压。先决条件:无
摘要为DC-DC转换器设计了新的电路拓扑。提议的转换器采用单个功率开关,该电源开关将传统的增强与光伏(PV)面板的单端主电感器转换器(SEPIC)集成在一起。从9 V DC输入中开发并实现了105 V DC输出的原型。使用理论和实际验证验证了所提出的拓扑的性能。结果表明,较高的电压增长率为11.67,低占空比为0.82,并且在大约54 V的组件上降低了电压应力。该电路可用于PV面板和其他需要DC-DC电压加速转换率的可再生能源。关键字:DC-DC加速转换器,光伏(PV)面板,电压增益,占空比和电压应力。引言可以通过从化石燃料转换为可再生能源资源来实现碳中性社会(Isah等人,2019年)。这种能源转型能够增强经济,给灾难带来韧性,并帮助农村社区对环境的损害较少,以获取电力(Isah等,2020)。太阳能是自然可用,干净,廉价的能源之一,需要使用光伏(PV)进行发电(Gopi and Sreejith,2018; Engin和Engin andçak,2016)。PV面板以机电能量形式利用太阳,并通过使用太阳能电池将其转化为电能(Oulad-Abbou等,2019; Ahmad等,2019; Jiang等,2016)。天气条件和安装区域是影响PV板性能的一些重要因素(Kuo等,2015)。发电系统可以用于网格连接或微电网连接(Kuo等,2015;Öztürk等,2018)。通常,网格连接需要实用程序变电站。出于这个原因,建造太阳能农田需要许多光伏面板,而太阳能农田又占据了一个用于农业实践和其他目的的广泛领域,