种系病原变异在编码赖氨酸特异性组蛋白甲基转移酶基因setD1a和setD2的两个基因中与神经发育障碍(NDDS)相关,这些神经发育障碍(NDDS)具有发育延迟和先天异常的特征。setD1a和setD2基因产物在染色质介导的基因表达调节中起关键作用。已经检测到一系列染色质基因相关NDD的特异性甲基化发作,并通过改善变异致病性的解释来影响临床实践。为了研究SETD1A和/或SETD2相关的NDD是否与可检测的发作相关,我们使用基于下一代测序的测定法进行了> 2 M CpG的靶向全基因组甲基化分析。比较setD1a变异患者(n = 6)患者甲基化谱的比较没有揭示出强烈的甲基化发作的证据。对SETD2患者组的临床和遗传特征的综述表明,如前所述,截断突变的患者(n = 4,卢斯坎·卢姆综合症; MIM:616831)和具有MISSense CODON 1740的coDON 1740变体[P.Arg1740trp(n = 4 = 4)和P.Argn和P.Argn = 2 grn = arg n = arg n = arg n = arg n = arg n = arg n = arg n = arg 1 grn = 2 grn = rgn = rgn = rgn = rgn = 2 gln = rgn = rgn = rgn = rg1,两个SETD2亚组都表现出甲基化发作,该发作分别以甲基化和高甲基化事件为特征。在密码子1740亚组中,甲基化变化和临床表型在患有P.ARG1740TRP变体的人群中都更为严重。我们还注意到,具有SETD2 -NDD的10例病例中有2例发生了肿瘤。这些发现揭示了SetD2-NDDS中新型的表观遗传型 - 基因型 - 表型相关性,并预测了SETD2密码子1740致病变体的功能获取机制。
我们预测,只有在两种蛋白质结合时,就会存在一个独特的分子,并且从使用分裂 - 涡轮注释3进行的分析中,我们还发现,许多转录调节剂与该复合物结合起作用。从以上结果来看,已经揭示了BOD1L与setD1a结合,并且比作为DNA修复调节剂更有帮助癌症生长和生存的转录启动子。 ■研究人员的评论(Chiba University医学研究生院Hoshii副教授)我们很高兴能够解决蛋白质 - 蛋白质相互作用的奥秘,这些蛋白质相互作用已经很长时间了。 SETD1A本身也引起了人们的关注,作为儿童疾病和精神分裂症的原因,因此我们希望这一发现将有助于癌症以外的其他疾病的治疗。 ■词汇表注释1)CRISPR平铺方法:一种通过设计基因编辑技术CRISPR/CAS9中用于单个基因的无数SGRNA来全面检查和识别在蛋白质上具有功能的位置的方法。注2)DEPMAP数据库:一个数据库,旨在鼓励发现癌症治疗靶标和开发治疗方法,以1,000多个癌细胞系进行的大规模CRISPR-CAS9筛选的结果。注3)分裂 - 涡轮增压:一种接近依赖性的标记方法,允许识别其周围蛋白质的标记,仅限于两种蛋白质相互作用时。 ■Paper information Paper title: BOD1L mediates chromatin binding and non-canonical function of H3K4 methyltransferase SETD1A Author: Takayuki Hoshii*, Sota Kikuchi, Tomoya Kujirai, Takeshi Masuda, Tomoko Ito, Satoshi Yasuda, Makoto Matsumoto, Bahityar Rahmutulla, Masaki Fukuyo,Takeshi Murata,Hitoshi Kurumizaka,Atsushi Kaneda *负责作者杂志名称:核酸研究doi:10.1093/nar/gkae605■参考材料1纸张1个纸张标题:SetD1A的非静脉功能调节setd1a的非催化功能。 10.1016/j.cell.2018.01.032■参考材料2纸张标题:setD1a在白血病杂志中调节血红素生物合成基因的转录暂停释放杂志名称:细胞报告DOI:10.1016/j.cellep.2022.1111727
言语的儿童失语(CAS)是原型严重的儿童言语障碍,其特征是运动编程和计划置换。遗传因素对CAS病因产生了实质性贡献,在三分之一病例中鉴定出单基因的致病变异,这意味着迄今为止有20个单个基因。在这里,我们旨在确定与CAS确定的70个无关的概率中的分子因果关系。我们进行了三重奏基因组测序。我们的生物信息学分析检查了单核苷酸,indel,拷贝数,结构和短串联重复变体。我们优先考虑从头开始产生的适当变体或基于计算机预测中会损害的遗传。我们确定了18/70(26%)概率的高置信变体,几乎使CAS的当前候选基因数量翻了一番。在18种变体中,有3个影响了SETBP1,SETD1A和DDX3X,因此确定了它们在CAS中的作用,而其余15个则发生在以前与该疾病不相关的基因中。从头出现了15个变体,三个变体继承。我们对儿童语音障碍的生物学提供了进一步的新见解,突出了CAS中染色质组织和基因调节的作用,并确认与CAS相关的基因在大脑发育过程中被共表达。与其他具有重大新变异负担的神经发育障碍相比,我们的发现证实了诊断产量可比甚至更高的诊断率。数据还支持越来越明显的基因之间的重叠,这些基因赋予了一系列神经发育疾病的风险。了解CAS的病因基础对于结束诊断性的奥德赛至关重要,并确保受影响的个体有望进行精确的医学试验。
言语的儿童失语(CAS)是原型严重的儿童言语障碍,其特征是运动编程和计划置换。遗传因素对CAS病因产生了实质性贡献,在三分之一病例中鉴定出单基因的致病变异,这意味着迄今为止有20个单个基因。在这里,我们旨在确定与CAS确定的70个无关的概率中的分子因果关系。我们进行了三重奏基因组测序。我们的生物信息学分析检查了单核苷酸,indel,拷贝数,结构和短串联重复变体。我们优先考虑从头开始产生的适当变体或基于计算机预测中会损害的遗传。我们确定了18/70(26%)概率的高置信变体,几乎使CAS的当前候选基因数量翻了一番。在18种变体中,有3个影响了SETBP1,SETD1A和DDX3X,因此确定了它们在CAS中的作用,而其余15个则发生在以前与该疾病不相关的基因中。从头出现了15个变体,三个变体继承。我们为儿童语音障碍的生物学提供了进一步的新见解,强调了CAS中染色质组织和基因调节的作用,并确认与CAS相关的基因在大脑发育过程中得到了共表达。与其他具有重大新变异负担的神经发育障碍相比,我们的发现证实了诊断产量可比甚至更高的诊断产量。数据还支持越来越明显的基因之间的重叠,这些基因赋予了一系列神经发育疾病的风险。了解CAS的病因基础对于结束诊断性的奥德赛至关重要,并确保受影响的个体有望进行精确的医学试验。
