为了比较不同尺寸系统中的闪光,应该使用密集型数量,即对系统体积不敏感的数量。通过测量分布的累积κi分裂(最高第四阶)来构建此类数量,其中i是累积的。在第二,第三和第四阶累积量密集量定义为:κ2 /κ1,κ3 /κ2和κ4 /κ2。图1显示了在150 /158 A GEV / c时净电荷的第三和第四阶累积比的系统尺寸依赖性。测量的数据与EPOS 1.99模型[4,5]预测一致。对相同数量的系统尺寸依赖性的更详细检查,用于负电荷的HADRON(图2)显示非常不同的系统尺寸依赖性。均未通过EPOS 1.99模型再现了测得的H +和H-。这种分歧表明我们不完全理解如何诱发爆发的基础物理学。因此,需要更详细的研究。在搜索CP时,可能的工具是质子插入性,该工具应遵循CP附近的幂律闪光。可以通过研究具有细胞大小的2 ND阶乘力矩f 2(m)的缩放行为,或等效地,在(p x,p y)中的质子中的细胞数量(参见参考文献。[6,7,8])。对于实验数据,必须通过混合事件减去非关键背景。减法后,第二个阶乘矩δf2(m)应根据M >> 1的幂律缩放,并导致关键
为了比较不同尺寸系统中的闪光,应该使用密集型数量,即对系统体积不敏感的数量。通过测量分布的累积κi分裂(最高第四阶)来构建此类数量,其中i是累积的。在第二,第三和第四阶累积量密集量定义为:κ2 /κ1,κ3 /κ2和κ4 /κ2。图1显示了在150 /158 A GEV / c时净电荷的第三和第四阶累积比的系统尺寸依赖性。测量的数据与EPOS 1.99模型[4,5]预测一致。对相同数量的系统尺寸依赖性的更详细检查,用于负电荷的HADRON(图2)显示非常不同的系统尺寸依赖性。均未通过EPOS 1.99模型再现了测得的H +和H-。这种分歧表明我们不完全理解如何诱发爆发的基础物理学。因此,需要更详细的研究。在搜索CP时,可能的工具是质子插入性,该工具应遵循CP附近的幂律闪光。可以通过研究具有细胞大小的2 ND阶乘力矩f 2(m)的缩放行为,或等效地,在(p x,p y)中的质子中的细胞数量(参见参考文献。[6,7,8])。对于实验数据,必须通过混合事件减去非关键背景。减法后,第二个阶乘矩δf2(m)应根据M >> 1的幂律缩放,并导致关键