为了比较不同尺寸系统中的涨落,应该使用强度量,即对系统体积不敏感的量。此类量通过除以测量分布的累积量 κ i(最高为四阶)得出,其中 i 是累积量的阶数。对于二阶、三阶和四阶累积量,强度量定义为:κ 2 /κ 1、κ 3 /κ 2 和 κ 4 /κ 2。图 1 显示了 150 / 158 A GeV / c 时净电荷三阶和四阶累积量比的系统尺寸依赖性。测量数据与 EPOS 1.99 模型 [4, 5] 的预测一致。对带负电和带正电强子的相同量对系统尺寸依赖性的更详细检查(图 2)表明系统尺寸依赖性非常不同。此外,EPOS 1.99 模型无法重现任何测量到的 h + 和 h − 量。这种不一致表明我们还没有完全理解涨落是如何产生的底层物理原理。因此,需要进行更详细的研究。在寻找 CP 时,一个可能的工具是质子间歇性,它应该遵循 CP 附近的幂律涨落。可以通过研究二阶阶乘矩 F 2 ( M ) 随胞元大小或等效地随中速质子 (px, py) 空间中胞元数量的缩放行为来检查(参见参考文献 [6, 7, 8])。对于实验数据,必须用混合事件减去非临界背景。减去后,二阶阶乘矩 Δ F 2 ( M ) 应该根据 M >> 1 的幂律缩放,得到临界
为了比较不同尺寸系统中的闪光,应该使用密集型数量,即对系统体积不敏感的数量。通过测量分布的累积κi分裂(最高第四阶)来构建此类数量,其中i是累积的。在第二,第三和第四阶累积量密集量定义为:κ2 /κ1,κ3 /κ2和κ4 /κ2。图1显示了在150 /158 A GEV / c时净电荷的第三和第四阶累积比的系统尺寸依赖性。测量的数据与EPOS 1.99模型[4,5]预测一致。对相同数量的系统尺寸依赖性的更详细检查,用于负电荷的HADRON(图2)显示非常不同的系统尺寸依赖性。均未通过EPOS 1.99模型再现了测得的H +和H-。这种分歧表明我们不完全理解如何诱发爆发的基础物理学。因此,需要更详细的研究。在搜索CP时,可能的工具是质子插入性,该工具应遵循CP附近的幂律闪光。可以通过研究具有细胞大小的2 ND阶乘力矩f 2(m)的缩放行为,或等效地,在(p x,p y)中的质子中的细胞数量(参见参考文献。[6,7,8])。对于实验数据,必须通过混合事件减去非关键背景。减法后,第二个阶乘矩δf2(m)应根据M >> 1的幂律缩放,并导致关键
为了比较不同尺寸系统中的闪光,应该使用密集型数量,即对系统体积不敏感的数量。通过测量分布的累积κi分裂(最高第四阶)来构建此类数量,其中i是累积的。在第二,第三和第四阶累积量密集量定义为:κ2 /κ1,κ3 /κ2和κ4 /κ2。图1显示了在150 /158 A GEV / c时净电荷的第三和第四阶累积比的系统尺寸依赖性。测量的数据与EPOS 1.99模型[4,5]预测一致。对相同数量的系统尺寸依赖性的更详细检查,用于负电荷的HADRON(图2)显示非常不同的系统尺寸依赖性。均未通过EPOS 1.99模型再现了测得的H +和H-。这种分歧表明我们不完全理解如何诱发爆发的基础物理学。因此,需要更详细的研究。在搜索CP时,可能的工具是质子插入性,该工具应遵循CP附近的幂律闪光。可以通过研究具有细胞大小的2 ND阶乘力矩f 2(m)的缩放行为,或等效地,在(p x,p y)中的质子中的细胞数量(参见参考文献。[6,7,8])。对于实验数据,必须通过混合事件减去非关键背景。减法后,第二个阶乘矩δf2(m)应根据M >> 1的幂律缩放,并导致关键
可以在微电网应用中进行管理。必不可少的想法是,公用事业与消费者之间的关系必须发展。在旧型号中,该公用事业公司从中央一代传递了电力,通常是一家大型燃煤电厂,客户打开了开关,并期望获得电力。在不断发展的模型中,有更多的分布式生成,例如屋顶太阳能收集器,并且需求是可以协商的。您可能不会为汽车充电,直到有多余的电源。电池形式的存储位于这种更复杂的关系的中间。“世界正在发生变化,我们需要一个迅速变化的公用事业,” PUC主席Jeffrey Ackermann在9月23日的每周会议上说。Ackermann继续确定“消费者选择机会,所有这些使公用事业都不舒服的事情,但未来的一部分都在努力。”另一位PUC专员约翰·加万(John Gavan)升级了Xcel,他说将来不只是出售千瓦时。它将
ilumira代表了核医学的重大突破。作为放射性疗法的关键创新,这种同位素为患者提供了更精确和有效的治疗选择,尤其是对于难以治疗的肿瘤。通过满足对晚期癌症疗法的需求不断增长,Primo的目的是提供从早期诊断到晚期治疗的全面解决方案,从而进一步增强了整个亚太地区的医疗保健结果。
1 1葡萄和葡萄酒研究所,广西农业科学学院,南宁530007,中国2个国家主要的保护和利用亚热带农用生物库,甘蔗生物学的主要实验室广东现代农业实验室,合成生物学的主要实验室,农业和农村事务部,农业基因组学研究所,中国农业科学院农业学院,深圳518000,中国518000,中国4 liuzhou水果生产技术指导站Feicui Liang,Zhuyifu Chen *相应的作者,电子邮件:xuxiaodong@caas.cn; 18977986390@163.com1葡萄和葡萄酒研究所,广西农业科学学院,南宁530007,中国2个国家主要的保护和利用亚热带农用生物库,甘蔗生物学的主要实验室广东现代农业实验室,合成生物学的主要实验室,农业和农村事务部,农业基因组学研究所,中国农业科学院农业学院,深圳518000,中国518000,中国4 liuzhou水果生产技术指导站Feicui Liang,Zhuyifu Chen *相应的作者,电子邮件:xuxiaodong@caas.cn; 18977986390@163.com
Symons和Samantha Smrekar Thompson此手稿是在18个月(2021-2022)中准备的,其中涉及对已发表的研究证据的广泛综述。审查的目的是为父母,老师和言语病理学家提供有关DLD文献的摘要。每个部分的参考已被删除,以便于阅读和消费。可以根据Carl Parsons博士(carl.parsons@shine.org.au)的要求获得参考。该文档的准备是由阳光基金会和Shine的Andrew Dean Fildes Foundation(Shine Programs)赠款资助的。在Shine网站上,该文档的缩短版本是DLD的Fact Sheet的“标题”。这些事实表仅提供每个区域的摘要。省略了解释性文本。原始文档也位于Shine网站上www.shine.org.au
摘要:NA61/SHINE 是 CERN SPS 的一个多用途固定目标设施。NA61/SHINE 强相互作用计划的主要目标是发现强相互作用物质的临界点以及研究解除约束的起始特性。为了实现这些目标,研究了在原子核-原子核、质子-质子和质子-原子核相互作用中,强子产生特性随碰撞能量和碰撞原子核大小的变化。本文介绍了强相互作用测量计划的 NA61/SHINE 结果。特别讨论了不同反应 p + p、Be + Be、Ar + Sc 和 Pb + Pb 对强子光谱、间歇性、多重性涨落的高阶矩和观察者引起的电磁效应的最新结果。
赞助商医疗保健科学与工程学院(Shine)VIT的医疗保健科学与工程学院(Shine)是一项开创性的计划,于2024年发起,旨在塑造未来的准备就绪的“ MedTech”专业人员。这所学校的愿景是通过结合工程,医疗,法律和商业领域的跨学科专业知识来弹射全球医疗保健市场的愿景。它提供了首个学士学位计划(B.医疗保健科学技术技术),由学术界,医疗保健和行业专家设计的课程。Shine专注于诊断,机器人技术,基因治疗和医疗设备等新兴领域。与《 2047年健康愿景》和联合国的可持续发展目标保持一致,使学生能够创建创新的解决方案,以推动医疗保健和提升社会。