由于各种原因,超声导波与 NDE 和 SHM 的集成正在迅速发展。由于对结构的访问有限,并且只能从结构上的单个位置的传感器检查大面积区域,因此超声导波通常是解决问题的唯一方法。超声导波与更标准的超声体波检查非常不同,后者可以进行数百种测试模式,而体波只能进行两种检查模式,即纵向和剪切。大约 15 年前,随着导波检查的兴起,人们对其使用寄予厚望,但后来由于缺乏理论理解和建模分析所需的计算能力薄弱而受到阻碍。在从实验室到现场的技术转移过程中,我们经常遇到涂层、隐藏、埋藏结构和环境中的几何复杂性等诸多挑战。他们的许多问题现在已经得到克服,技术转移和产品开发正在迅速推进。导波创新在应用、灵敏度和穿透力方面令人惊叹。这些页面讨论了其中一些进步。
自 21 世纪初以来,船体监测系统 (SHMS) 已在军用和民用船舶的最佳运行和结构生命周期管理中得到实际应用。光纤布拉格光栅 [1] 传感器 [2] 被认为是一种有前途的应变传感器技术,可用于恶劣环境,此后在海事领域和其他领域得到了广泛的应用。20 世纪 90 年代中期,挪威国防研究机构 (FFI) 与美国海军研究实验室合作,为挪威皇家海军 (RNoN) 的扫雷舰 KNM Hinnøy [3] 配备仪器。这项工作在 1999 年在挪威皇家海军轻型护卫舰 KNM Skjold [4], [5] 上进行的广泛海上试验中继续进行,其中首次应用了一种通过光纤传感器网络测量整体载荷的方法 [6]。自那时起,SHM 系统已安装在数百艘船舶上,以解决全球载荷、疲劳、晃荡、砰击、冰区作业载荷、乘客舒适度和相关问题 [7]。
摘要:微机电系统 (MEMS) 为适用于结构健康监测 (SHM) 应用的传感器微型化提供了新技术。在本研究中,基于 MEMS 的传感器,特别是压电微机械超声波换能器 (PMUT),用于评估和监测螺栓连接结构系统的预紧力。为了使螺栓连接正常工作,必须保持适当的预紧力水平。在本研究中,连接到螺栓头部和末端的 PMUT 阵列分别用作一发一收超声波检测 (UT) 场景中的发射器和接收器。主要目标是检测由 PMUT 阵列产生的声波的飞行时间变化 (CTOF),该声波沿螺栓轴在无负载螺栓和使用中的螺栓之间传播。为了模拟螺栓接头的预紧力以及声波通过螺栓传输到一组 PMUT 和从一组 PMUT 传输的声波,我们创建了一组数值模型。我们发现 CTOF 与预紧力的大小呈线性关系。通过与初步实验结果进行比较,验证了数值模型的有效性。
部分可观察到的环境中有效的决策需要强大的内存管理。尽管他们在监督学习方面取得了成功,但当前的深度学习记忆模型在强化学习环境中挣扎,这些学习环境是可以观察到的,这些模型是可以观察到的。他们无法有效地捕获相关的过去信息,灵活地适应不断变化的观察结果,并在长剧集中保持稳定的更新。我们从理论上分析了统一框架内现有内存模型的局限性,并引入了稳定的Hadamard内存,这是一种用于增强学习剂的新型内存模型。我们的模型通过不再需要经验并在计算上有效地加强至关重要的体验来动态调整内存。为此,我们利用Hadamard产品来校准和更新内存,专门设计用于增强记忆能力,同时减轻数值和学习挑战。我们的方法极大地超过了基于最先进的内存方法,这些方法在挑战的部分可观察的基准(例如元提升学习,长期的信用分配和流行音乐)上表现出了在处理长期和不断发展的环境中的出色表现。我们的源代码可在https://github.com/thaihungle/shm上找到。
摘要:作为一种有效的结构健康监测(SHM)技术,基于压电换能器(PZT)和导波的监测方法在空间领域引起了越来越多的关注。面对空间结构的大规模监测需求,需要大量的PZT,而这可能导致连接电缆额外重量、放置效率和性能一致性方面的问题。PZT层是针对这些问题的一种有前途的解决方案。但目前的PZT层仍然面临着大规模轻量化监测和缺乏极端空间服役条件下可靠性评估的挑战。针对这些挑战,本文提出了一种大规模PZT网络层(LPNL)设计方法,采用大规模轻量化PZT网络设计方法和基于网络分裂重组的集成策略。所开发的LPNL具有尺寸大、重量轻、超薄、灵活、形状定制和高可靠性的优势。为验证所研制的LPNL在航天服役环境下的可靠性,开展了一系列极端环境试验,包括极端温度条件、不同飞行阶段的振动、着陆撞击、飞行过载等,结果表明所研制的LPNL能够承受这些恶劣的环境条件,具有较高的可靠性和功能性。
这是Anshm EC在Arc Decra研究员Ronan Nguyen博士和行业参与(数据科学)经理Angela Dahlke的帮助下产生的第一个水果。对于那些有兴趣拥有传单的印刷版本的人,请给我发电子邮件。我们还为此提议的“未来基础架构监控” ARC ITRH/ITTC准备了一份更详细的文件,总结了要解决的行业挑战,合作伙伴的福利以及ARC,大学合作伙伴和行业合作伙伴的预期贡献。作为ANSHM的成员,我在下面显示了小册子的一些细节(草案),以供您的信息和考虑参加此建议的ITTC/ITRH。为解决基础设施和建筑物的适当结构性健康监测(SHM)而无法解决的行业挑战可能是灾难性的。下面列出了几个臭名昭著的全球和澳大利亚基础设施故障。灾难性后果包括:人类死亡和其他严重的OH&S事件;关键的结构性故障(昆士兰州的候选人发电站,离线约2亿美元,涡轮机更换);对公用事业,服务,企业和房屋的破坏;破坏财产;大量直接和间接的财务成本;和法律负债。
s Grigg,C A Featherston,M Pearson和R Pullin Cardiff工程学院,加的夫大学,皇后建筑,游行,加的夫,CF24 3AA摘要。声发射(AE)是一种原位结构性健康监测(SHM)技术,在该技术中,由于裂纹生长而产生的超声波监测结构。将AE应用于飞机和其他复杂结构时,AE的主要挑战是,波传播会受到加强剂,孔,厚度变化和其他复杂性的显着影响。这降低了基于奇异传播波速的传统源位置技术的准确性。Delta-T方法通过映射结构并考虑这些更改来实现更高级别的准确性。在这项工作中,AE监视设备安装在铝空客A320机翼的一部分上。位置试验显示,与商业标准技术相比,人工HSU-Nielson来源的Delta-T技术将平均误差从85mm提高到23mm。在疲劳下进行测试证明了检查3D结构(由于多个信号路径)具有显着水平的背景噪声时遇到的挑战。在结构中鉴定出的两个裂纹中,其中第一个被成功地检测到并找到,而另一个由于高机噪声和无代表性的负载而错过了。
摘要:从原始传感器数据中提取的诊断潜力健康指标 (HI) 是数据驱动的复合结构诊断和预测的重要特征。本文研究了从使用光纤布拉格光栅 (FBG) 和声发射 (AE) 数据获取的应变中开发的新损伤敏感特征是否适合用作 HI。对单条复合板进行了两次疲劳试验。在以冲击损伤或人工脱粘的形式引入初始损伤后,对面板进行恒定和可变振幅压缩-压缩疲劳试验。通过 FBG 和 AE 进行应变感应是两种有前途的结构健康监测 (SHM) 技术,用于监测损伤增长,并通过相控阵超声进一步验证。几个 FBG 被纳入特殊的 SMARTapes TM 中,这些 SMARTapes TM 沿着加强筋的脚粘合以测量应变场,而 AE 传感器则策略性地放置在面板的外皮上以记录声发射活动。从 FBG 和 AE 原始数据中提取了几种 HI,它们的行为有望用于复合材料结构在使用过程中的损伤监测。为了进一步评估 HI 的行为和适用性,在整个实验过程中使用相控阵相机在多个时间点进行测量,从而提供基于超声波的损伤评估。
1.执行摘要 7 2.介绍 8 2.1 背景 8 2.2 NCS 的监管要求 9 3.PSA 项目 10 3.1 目标 10 3.2 工作范围 10 3.3 限制和假设 10 3.4 项目执行描述 11 4.现有的数字解决方案和结构完整性管理规范和标准 12 4.1 概述 12 4.2 现有规范和标准 13 4.3 观察和讨论 15 4.4 总结 16 5.用于数据收集的传感器技术 17 5.1 概述17 5.2 使用传感器技术的背景 17 5.3 传感器技术 20 5.4 观察和讨论 22 5.5 总结 23 6.构建使用数字解决方案和 SHM 进行完整性管理的框架 24 6.1 概述 24 6.2 框架 24 6.3 结构监测系统的预研究和设计 26 6.4 级别 1 – 筛选和诊断 27 6.5 级别 2 – FE 模型更新 29 6.6 级别 3 – 负载模型更新 30 6.7 级别 4 – 不确定性的量化 31 6.8 级别 5 – 变化检测(损伤检测) 33 6.9 框架总结 34 7.价值创造和实际示例实施 35 7.1 概述 35 7.2 实际实施示例 36 8.参考文献 40
纤维增强聚合物 (FRP) 复合材料层压板具有优异的强度、刚度和设计灵活性,被广泛应用于航空航天和工程领域。然而,FRP 层压板易受低速冲击损伤 [1]。冲击事件通常会造成内部损伤,而外部损伤迹象却很小,这也称为几乎看不见的冲击损伤 (BVID)。这种隐藏损伤对层压板性能的影响可能非常显著,特别是在压缩状态下,强度可能降低高达 50% [2]。因此,有必要定期进行无损检测或实施结构健康监测 (SHM) 系统来检测损伤的存在并防止结构发生灾难性故障 [3]。因此,在设计中纳入了大量安全因素以确保其安全性和可靠性,从而使复合材料结构重量更重、截面更厚。传统上,一旦在复合材料结构中检测到损伤,就会设计并进行临时或结构修复。这些问题的另一种解决方案是应用自修复 FRP 复合材料。自修复可以减轻撞击事件造成的损害,从而有机会改善 FRP 的设计容许值或提供其他好处,如减少维护和检查时间[4]。20 世纪 80 年代初,Wool 和 O'Conner 在裂纹修复的背景下探索了聚合物中修复材料的概念[5]。这项初步工作重点是了解如何使用溶剂焊接方法修复或修复裂纹。在这项研究中,Wool 和 O'Conner