3 由于集成电路技术的缩放早已脱离了严格的恒定场或经典的电压缩放,因此本章中使用“摩尔定律缩放”一词作为尺寸缩放、能量缩放和新材料引入的总称——所有这些都是为了实现英特尔联合创始人戈登·摩尔在 1965 年描述的功能进展。
1彼得·格伦伯格研究所(PGI 10),福斯申斯特鲁姆·尤里奇(ForschungszentrumJülich),威廉 - 约翰·斯特拉斯(Wilhelm-Johnen-Straße),尤里奇(Jülich)52425,德国2 IHP - 莱布尼兹(Leibniz) - 莱布尼兹(Leibniz ElmshöherAllee 71,Kassel 34121,德国4分校技术研究所(IHT),Stuttgart,Pfaffenwaldring 47,Stuttgart 70569,德国5伊布尼兹水晶增长研究所,麦克斯 - 斯特拉斯2,柏林12489,德国7 Dipartimento di Scienze,Universit`roma tre,Viale G. Marconi 446, I-00146,罗马,意大利 8 实验物理和功能材料,BTU Cottbus-Senftenberg,Erich-Weinert-Str。 1,03046,科特布斯,德国
这些和其他有吸引力的特点引起了人们对这种技术日益增长的兴趣,包括材料科学的基本方面和控制界面特性的化学方法。纳米材料合成方法和纳米制造技术的最新进展为具有极高界面面积和极小尺寸的化学传感器创造了机会,分别可以提高灵敏度和响应时间。以前的报告描述了独特的传感器类别,它们利用各种类型的纳米材料和设备架构进行有针对性的应用,活性材料包括有机半导体[3,4]、无机薄膜和纳米线[5–9]、碳纳米管[10]、石墨烯[11]和过渡金属二硫代化合物[12]。在所研究的广泛材料中,单晶硅及其衍生物尤其令人感兴趣,因为其具有优异、可重复和良好控制的电子特性,可实现卓越的性能和节能运行,并与互补金属氧化物半导体 (CMOS) 技术兼容,用于集成多路复用和信号处理。各种研究都表明了此类化学传感平台的用途,重点是制备、组装、界面工程、电气性能和应用。与其他纳米材料(例如石墨烯、过渡金属二硫属化物、黑磷)相比,这些纳米材料通常包含一系列不受控制的活性位点(例如空位、晶粒边界和缺陷),对基面传感产生不利影响,而现代方法可以常规形成单晶硅,质量优异,成本低,面积大,结构和材料特性近乎完美。[13] 受控生长和/或光刻
凝聚微孔网络在气体和能量存储、传感和催化应用方面受到了广泛关注。1 9,9'-螺二芴基序对电子应用尤其重要,2,3 也已成为一种流行的结构单元,可作为扭曲位点来创建具有内在微孔性的材料。4-23 Yamamoto 将易得的 2,2',7,7'-四溴-9,9'-螺二芴与 Ni(COD) 2 偶联,可产生非常高表面积的微孔网络,并且在类似条件下与刚性二溴化芳香支柱进行共聚,可为材料提供可调的光学和气体吸附性能。24,25 其他方法也从 2,2',7,7'-四溴-9,9'-螺二芴试剂开始产生了均聚物或共聚物网络。目前对基于 9,9'-螺二芴更四面体导向的 3,3',6,6' 位聚合的缩合网络的探索相对较少,这可能是由于在 3,3',6,6' 位选择性卤化固有的挑战性所致。最近在 3,3',6,6' 位选择性卤化的一项策略是先在 2,2',7,7' 位进行初始甲氧基化,然后与 I 2 /PIFA 反应,得到 2,2',7,7'-四碘-3,3'6,6'-四甲氧基-9,9'-螺二芴前体。26 对该前体的进一步修饰产生了核碱基修饰的四足体。 27 随后,四炔通过 Sonogashira 和乙炔偶联反应聚合,生成螺二芴骨架,可作为 Pd 和 Pt 催化氢化的载体。28 3,3',6,6'-
量子计算是一个快速发展的领域:制造的量子比特数量不断增加,战略路线图也在定期发布 [1]。硬件的进步让人们开始热烈讨论量子霸权是否已经实现 [2]。到目前为止,这些开创性的实验依赖于基于超导体、冷原子和囚禁离子的量子比特。硅自旋量子比特仍然落后,到目前为止只演示了双量子比特门 [3](勉强建造了一个四量子比特的 Ge 量子处理器 [4])。关键在于,人们认为基于硅(或 SiGe)的量子比特在个体规模上非常有前景:i)已经测量了创纪录的自旋寿命 [5];ii) 据报道,在各种硅/氧化硅和硅/锗器件中都实现了高保真单量子比特和双量子比特门 [3];iii) 已经实现了快速操作 [5]。非常恰当的是,这些量子比特应该受益于半导体行业的成熟,从而实现大规模生产。图 1 提供了几个实验系统的相关性能指标的基准。在本文中,我们将探讨在大规模上充分发挥其潜力的过程中仍然存在的材料和集成挑战。
常见首字母缩略词和缩写 Acq O&M - 收购相关运营和维护 ACAT - 收购类别 ADM - 收购决策备忘录 APB - 收购计划基准 APPN - 拨款 APUC - 平均采购单位成本 $B - 十亿美元 BA - 预算授权/预算活动 Blk - 区块 BY - 基准年 CAPE - 成本评估和计划评估 CARD - 成本分析要求说明 CDD - 能力开发文件 CLIN - 合同项目编号 CPD - 能力生产文件 CY - 日历年 DAB - 国防收购委员会 DAE - 国防收购执行官 DAMIR - 国防收购管理信息检索 DoD - 国防部 DSN - 国防交换网络 EMD - 工程和制造开发 EVM - 挣值管理 FOC - 全面作战能力 FMS - 对外军售 FRP - 全速率生产 FY - 财政年度 FYDP - 未来年份 国防计划 ICE - 独立成本估算 IOC - 初始作战能力 Inc - 增量 JROC - 联合需求监督委员会 $K - 数千美元 KPP - 关键性能参数 LRIP - 低速率初始生产 $M - 数百万美元 MDA - 里程碑决策机构 MDAP - 重大国防采办计划 MILCON - 军事建设 N/A - 不适用 O&M - 运营与维护 ORD - 作战要求文件 OSD - 国防部长办公室 O&S - 运营与支援 PAUC - 项目采办单位成本 PB - 总统预算 PE - 项目要素 PEO - 项目执行官 PM - 项目经理 POE - 项目办公室估算 RDT&E - 研究、开发、测试与评估 SAR - 选定采办报告 SCP - 服务成本位置 TBD - 待定 TY - 当年 UCR - 单位成本报告 U.S. - 美国 USD(A&S) - 国防部副部长(采办与保障) USD(AT&L) - 副部长国防部长(采购、技术和后勤)
2015年9月8日至11日,题为“21世纪的工业遗产”的第十六届TICCIH大会在里尔举行。新的挑战”,在里尔大学法学院的Moulins校区内,在里尔北部Comue(大学和机构社区)的支持下,一座前纺纱厂得到了完美的改造法国。参与者能够欣赏到场地的建筑质量以及为此活动动员起来的整个团队所给予的热烈欢迎。组织的多次参观使我们有可能发现大约三十个地区地点,其中包括北部-加来海峡矿盆地,我们花了一整天的时间参观了该地区。所有这一切的实现都得益于众多合作伙伴的帮助:文化部、北部加莱海峡大区(现为上法兰西大区)、法国里尔北部地区委员会、法国巴黎高等学校Hautes Études en Sciences Sociales、CNRS、历史研究中心 (EHESS/CNRS)、法兰西大学学院、法兰西岛大区 – 参观地点大会后 – 里尔欧洲大都市、北部省、鲁贝市和里尔市、矿区代表团、朗斯-列万城市社区、敦刻尔克大滨海地区、帕斯卡基金、国家林业局、旅游局Douasis、Lens-Liévin 和 Porte du Hainaut,Oignies 的 9-9bis,Chaîne des渣堆,
概述SC11/SI是我们综合现场调查设备的最新版本。它具有数据采集和通过传感器接口中的嵌入式微型计算机进行处理,以增强性能。不需要我们早期系统使用的单独的数据采集卡(DAQCARD)。计算机的数据接口通过行业标准USB连接,该连接使系统可以与运行Microsoft Windows的大多数现代笔记本电脑一起使用。该系统旨在灵活且适应适合客户需求。核心系统包括传感器接口,软件和自定义携带案例。和典型系统还包括DC-13 kHz三轴磁场传感器,加速度计和精确麦克风。该软件套件包括三个虚拟仪器,一个示波器,频谱分析仪和图表记录器,这些记录仪以笔记本电脑屏幕的形式显示。还包括“ SCPLOT”,这是一个全面的结果绘图程序,“ SC11向导”,有助于设置单个测量值和“ SC11调查”,该测量可自动进行完整的调查。
