锂离子电池 (LIB) 在离子导电介质(即电解质)中通过 Li + 在阴极和阳极之间穿梭来存储/释放能量。[3] 由于 Li 的摩尔质量低(6.9)且 Li + 的离子半径小(0.76 ˚A),LIB 在各种储能系统中的 Ragone 图中表现出最佳能量密度。[4-6] 尽管如此,其他储能系统,包括超级电容器[7]、锌离子电池[8,9]、固态电池[10]、碱性金属电池[11]、锂硫电池[12] 等,在实现 LIB 方面各有优势,可实现高倍率能力、长循环寿命、通过水系/固态电解质提高安全性,并可能通过金属阳极和硫正极提高能量密度。与LIBs类似,钠离子电池(SIBs)也是由安装在集流体上的阴极和阳极组成,中间由Na+导电电解质(有时还有绝缘隔膜)隔开。[13]SIB的电化学机理也是基于Na+在阴极和阳极之间的穿梭(图1a)。尽管与LIBs有许多相似之处,但是较大的离子半径(Na+:1.02˚A)和较高的Na摩尔质量(23)将导致SIBs的电化学动力学受阻和容量受损。此外,钠的较高标准氧化还原电位(Na/Na+−2.74V vs Li/Li+−3.04V)损害了实现的能量密度。 [2,14 – 16] 因此,Na 的理论重量/体积容量(1166 mAh g −1;1131 mAh cm −3)低于 Li(3861 mAh g −1;2062 mAh cm −3)。[2] 尽管如此,由于 SIBs 的丰度更高(Na 2.36 wt.% vs Li 0.0017 wt.%)且在地壳中分布均匀,原材料成本低得多,因此 SIBs 显示出作为 LIBs 可持续且具有成本效益的替代品的巨大潜力。 [6,17] 相反的是,由于锂和钴的储量有限且分布集中在政治敏感地区,预测供应风险已引起锂原材料(如 Li2CO3)成本波动,并显著提高了 LIB 制造成本。[13,18–23] 此外,Na+ 所需能量低于 Li+
©作者2020。由牛津大学出版社出版,代表《分子细胞生物学杂志》,IBCB,SIBS,CAS。这是根据Creative Commons Attribution许可条款(http://creativecommons.org/licenses/4.0/)分发的一篇开放访问文章,该文章允许在任何媒介中不受限制地重复使用,分发和再现,前提是适当地引用了原始工作。
仅在 2024 年,我们就在 11 场 EMVCo 会议上与 EMVCo 合作伙伴和用户进行了广泛的交流,全球数百名利益相关者加入我们的行列,其中包括来自 Allthenticate、Australian Payments Network、Broadcom、Cartes Bancaires、CharIN、Commonwealth Bank、Merchant Advisory Group、Merchant Risk Council、Nexi Group、Netcetera、Pan Nordic Card Association、SIBS 和 TotalEnergies 的特邀演讲嘉宾。EMVCo 代表还在 15 场行业会议上与利益相关者进行了交流。
摘要是元素周期表中的特殊元素,氟气体具有2.87 V与F-的最高标准电极电位,而氟原子具有最大的电负性。从著名特性中受益,氟在锂离子电池(LIB)和钠离子电池(SIB)的开发中起着重要作用。在阴极材料中,高电负性渲染增强了过渡金属氟键的离子特征,并且在电解质中的工作电位相应高;氟化电解质具有良好的抗氧化能力和耐火能力,可以显着提高电池的热安全性。在电极 - 电解质界面上,富含氟的无机成分(例如LIF和NAF)对于在阳极上形成坚固且稳定的固体电解质界面至关重要。尽管在氟阴极,电解质和接口方面取得了显着的进步,但仍然缺乏对氟化物在LIBS和SIBS中的功能的全面了解。因此,本综述简要概述了基于氟的电极,电解质和接口的最新进展,并突出了组成,特性和功能之间的相关性,以揭示Libs和Sibs中的氟化学。本综述将为氟主导的高性能电极材料,功能化电解质和合并界面的有理设计和针对性调节提供指导。
高性能,低成本,可持续采购的SIBS材料将满足不断增长的替代电池技术的需求。当前的硬碳材料通常来自碳质前体,例如在高温下进行长时间加热的螺距(石油和天然气行业的副产品)。这是一个非常能量消耗的过程,与使用化石燃料衍生的原料相结合,具有显着的环境足迹。此外,中国是世界上主要的硬碳材料供应商,QUT正在开发的过程旨在提供替代的西方阳极材料供应,从而降低了SIB细胞制造商的主权风险。
在不断发展的现代社会社会中,对可再生能源利用和环境保护的需求不断增长,已致力于利用电能转换和存储设备,以最大程度地利用间歇性可再生太阳能和风能[1-6]。在这些电能量存储设备中,锂离子电池(LIB),具有高能量密度,较长的循环寿命和环境良性良性的功能,已广泛应用于便携式电子设备,电动车辆和智能网格中[7-13]。然而,在地壳中含有的锂资源,相关的高成本阻碍了Libs的大规模应用[14-20]。然而,具有类似于李的物理化学特性,钠和钾具有自然界的大量资源。因此,对钠离子电池(SIBS)和钾离子电池(KIBS)进行了广泛研究
抽象的仪器电池电池(即包含传感器的那些)和智能电池(具有集成控制和通信电路)对于开发下一代电池技术(例如钠离子电池(SIB))至关重要。参数的映射和监视,例如温度梯度的量化,有助于改善单元格设计并优化管理系统。必须保护集成的传感器免受严酷的电解环境。最先进的涂料包括使用Parylene聚合物(我们的参考案例)。我们将三种新型涂料(基于丙烯酸,聚氨酯和环氧树脂)应用于安装在柔性印刷电路板(PCB)上的热敏电阻阵列。我们系统地分析了涂料:(i)电解质小瓶中的PCB浸没(8周); (ii)分析插入硬币细胞的样品; (iii)分析1AH小袋SIBS的传感器和细胞性能数据。基于钠的液体电解质,由溶解在碳酸乙烯酸乙酯和碳酸二乙二烯的混合物中的1 m溶液(NAPF 6)的比例为3:7(v/v%)的混合物组成。我们的新型实验表明,基于环氧的涂层传感器提供了可靠的温度测量。与戊烯传感器相比,观察到的出色性能(据报道,一个样品的错误结果,在电解质中浸入5 d以下)。核磁共振(NMR)光谱在大多数测试的涂层的情况下显示,在暴露于PCBS涂抹的不同涂层期间发生了其他物种。基于环氧的涂层表现出对电解环境的韧性,并且对细胞性能的影响最小(与未修饰的引用相比,在2%的硬币细胞中,容量降解在2%以内,小袋细胞的3.4%以内)。这项工作中详细介绍的独特方法允许传感器涂层在现实且可重复的细胞环境中进行试验。这项研究首次证明了这种基于环氧树脂的涂层使可扩展,负担得起和弹性的传感器能够集成到下一代智能SIBS上。
摘要 合金材料(如硅、锗、锡、锑等)具有高容量、合适的工作电压、地球资源丰富、环境友好和无毒等特点,是下一代锂离子电池(LIBs)和钠离子电池(SIBs)有前途的负极材料。虽然最近报道了一些有关这些材料的重要突破,但它们在合金化/脱合金过程中剧烈的体积变化会导致严重的粉碎,从而导致循环稳定性差和安全风险。虽然合金的纳米工程可以在一定程度上缓解体积膨胀,但仍存在其他缺点,例如初始库伦效率和体积能量密度低。由纳米颗粒和纳米孔组成的多孔微尺度合金继承了微米和纳米特性,因此多孔结构可以更好地适应锂化/钠化过程中的体积膨胀,从而释放应力并提高循环稳定性。本文介绍了多孔材料的最新进展
已经提出了几种用于SIBS的阴极活性材料(CAM)家族,包括分层氧化物,聚苯二元组合和普鲁士蓝色类似物(PBA)。[9–11]后者由于其低成本合成方法而被认为是特别有希望的,消除了对高温处理的需求,通过使用可持续和丰富的金属(例如铁和锰)(例如铁和锰)所实现的可调氧化还原行为,以及其令人满意的能力和功能能力,并在其开放式框架结构中与大型互联型相互融合,使其综合构成了3D的开放式结构。[9,12,13]此外,它们可以在水性电解质(有限的电池电压)和类似于LIB的有机电解质中进行操作,从而实现了较高的细胞电压。[14–18]因此,对这些材料进行了强大的研究和商业化工作,包括CATL,Natron Energy和Altris等制造商。[19,20]
成为兄弟姐妹感觉如何?作为残疾的兄弟姐妹的兄弟姐妹,额外的需求或长期健康状况会带来既好又具有挑战性的经验。兄弟姐妹经常学习技能并通过支持其兄弟姐妹来发展能力。这意味着他们经常表现出良好的耐心,可以创造性和足智多谋。但是,有时兄弟姐妹可能也有些挣扎。兄弟姐妹有时可能会感到孤立,担心和孤独。在哪里可以找到我的兄弟姐妹的信息?在我们支持兄弟姐妹的20年中,我们了解了儿童和年轻人获得高质量信息的重要性。Youngsibs是我们针对7-17岁兄弟姐妹的在线信息服务。网页提供了一系列资源,包括适合年龄的残疾和健康状况信息,包括自闭症,多动症,脆弱的X和学习障碍。有很多有关如何应对学校同胞生活的信息,保持良好的心理健康以及有关兄弟姐妹担心未来可以做什么的技巧。重要的是,还有有关寻找与兄弟姐妹建立积极关系的方法的信息。sibs还为儿童撰写了每月博客,例如庆祝家庭场合,改变学校或学习新诊断等相关主题。