Bentin, S., Mouchetant-Rostaing, Y., Giard, MH, Echallier, JF, & Pernier, J. (1999). 不同心理语言学水平上处理印刷文字的 ERP 表现:时间进程和头皮分布。认知神经科学杂志,11 (3),235 – 260。https://doi.org/10. 1162/089892999563373 Binder, JR, Desai, RH, Graves, WW, & Conant, LL (2009). 语义系统在哪里?对 120 项功能神经影像学研究的批判性回顾和荟萃分析。大脑皮层,19 (12), 2767 – 2796。https://doi.org/10.1093/cercor/bhp055 Boersma, P., & Weenink, D. (2018)。Praat:用计算机进行语音学研究。检索自 http://www.praat.org/ Brysbaert, M., Buchmeier, M., Conrad, M., Jacobs, AM, Bölte, J., & Böhl, A. (2011)。词频效应:回顾德语中频率估计选择的最新发展及其影响。实验心理学,58 (5), 412 – 424。https://doi.org/10。 1027/1618-3169/a000123 Cattaneo, Z.、Pisoni, A. 和 Papagno, C. (2011)。经颅直流电刺激布罗卡区可改善健康个体的语音和语义流畅性。神经科学,183,64 – 70。https://doi.org/ 10.1016/j.neuroscience.2011.03.058 Chouinard, PA、Whitwell, RL 和 Goodale, MA (2009)。侧枕叶和下额叶皮层在命名视觉呈现的物体时发挥着不同的作用。 Human Brain Mapping,30 (12),3851 – 3864。https://doi.org/10.1002/hbm.20812 Costafreda, SG、Fu, CHY、Lee, L.、Everitt, B.、Brammer, MJ 和 David, AS (2006)。对言语流畅性的 fMRI 研究的系统评价和定量评估:左下额叶回的作用。Human Brain Mapping,27 (10),799 – 810。https://doi.org/10.1002/hbm.20221 de Zubicaray, GI 和 Piai, V. (2019)。研究言语产生的空间和时间成分。《牛津神经语言学手册》。牛津:牛津大学出版社。 Devlin, JT、Matthews, PM 和 Rushworth, MFS (2003)。左下前额皮质的语义处理:功能性磁共振成像和经颅磁刺激相结合的研究。认知神经科学杂志,15 (1),71 – 84。https://doi.org/ 10.1162/089892903321107837 Duecker, F. 和 Sack, AT (2013)。刺激前假 TMS 有助于目标检测。PLoS One,8 (3),e57765。https://doi.org/10.1371/journal.pone.0057765 Epstein, CM、Lah, JJ、Meador, KJ、Weissman, JD、Gaitan, LE 和 Dihenia, B. (1996)。磁脑刺激侧向言语抑制的最佳刺激参数。神经病学,47 (6),1590 – 1593。https://doi.org/10.1212/WNL.47.6.1590 Epstein, CM, Meador, KJ, Loring, DW, Wright, RJ, Weissman, JD, Sheppard, S., … Davey, KR (1999)。经颅磁刺激期间言语停止的定位和特征。临床神经生理学,110 (6),1073 – 1079 https://doi.org/10.1016/S1388-2457(99)00047-4 Fiez, JA (1997)。语音学、语义学和左下前额皮质的作用。人脑映射,5,79 – 83 https://doi.org/10. 1002/(SICI)1097-0193(1997)5:2<79::AID-HBM1>3.0.CO;2-J Flitman, SS, Grafman, J., Wassermann, EM, Cooper, V., O'Grady, J., Pascual-Leone, A., & Hallett, M. (1998)。重复经颅磁刺激过程中的语言处理。神经病学,50 (1),175 – 181。https://doi.org/10.1212/WNL.50.1.175 Gough, PM、Nobre, AC 和 Devlin, JT (2005)。通过经颅磁刺激分离左下额叶皮质的语言过程。神经科学杂志,25,8010 – 8016。https://doi.org/ 10.1523/JNEUROSCI.2307-05.2005 Grogan, A.、Green, DW、Ali, N.、Crinion, JT 和 Price, CJ (2009)。第一和第二语言中语义和音位流畅能力的结构相关性。大脑皮层,19,2690 – 2698。https://doi.org/10。 1093/cercor/bhp023 Groppa, S., Werner-Petroll, N., Münchau, A., Deuschl, G., Ruschworth, MFS, & Siebner, HR (2012). 一种新颖的双位点经颅磁刺激范式,用于探测来自同侧的快速促进输入
1. Morita T、Asada M、Naito E。神经影像学研究对理解人类认知大脑功能发展的贡献。Front Hum Neurosci。2016;10:464。doi:10.3389/fnhum.2016.00464 2. Bandettini PA。神经影像学方法有什么新进展?Ann NY Acad Sci。2009;1156:260-293。doi:10.1111/j.1749-6632.2009.04420.x 3. Verner E、Baker BT、Bockholt J 等人。使用 BrainForge 加速神经影像学研究。Gateways 2020,会议改善生物医学研究的数据使用; 2020 年 10 月 21 日。4. Poldrack RA、Baker CI、Durnez J 等人。扫描地平线:迈向透明和可重复的神经影像学研究。Nat Rev Neurosci。2017;18(2):115-126。doi: 10.1038/nrn.2016.167 5. Gorgolewski K、Poldrack R。提高神经影像学研究透明度和可重复性的实用指南。PLOS Biol。2016;14:e1002506。doi: 10.1371/journal.pbio.1002506 6. Baker M。1,500 名科学家揭开可重复性的面纱。Nature。2016;533(7604):452-454。 doi: 10.1038/533452a 7. Scott A、Courtney W、Wood D 等人。COINS:为大型异构数据集构建的创新信息学和神经成像工具套件。Front Neuroinform。2011;5:33。doi: 10.3389/fninf.2011.00033 8. Yoo AB、Jette MA、Grondona M。SLURM:用于资源管理的简单 Linux 实用程序。引自:Feitelson D、Rudolph L、Schwiegelshohn U 编。并行处理的作业调度策略。JSSPP 2003。计算机科学讲义。Springer;2003:44-60。9. Avesani P、McPherson B、Hayashi S 等人。开放扩散数据衍生物、通过衍生物的集成发布和可复制的开放云服务进行脑数据升级。 Sci Data 。2019;6(1):69。doi:10.1038/s41597-019-0073-y 10. Flywheel。为医疗和研究领域的数字化转型提供动力。2021 年 5 月 14 日访问。flywheel.io 11. Kurtzer GM、Sochat V、Bauer MW。Singularity:用于移动计算的科学容器。PLoS One。2017;12(5):e0177459。doi:10.1371/journal.pone。0177459 12. Merkel D。Docker:用于一致开发和部署的轻量级 Linux 容器。Linux J 。2014;239:2。13. Ashburner J、Barnes G、Chen CC 等人。SPM12 手册。第 2464 卷。威康信托神经影像中心;2014 年。14. Smith SM、Jenkinson M、Woolrich MW 等人。功能性和结构性 MR 图像分析进展以及作为 FSL 的实现。神经影像。2004 年;23 (Suppl 1):S208-S219。doi: 10.1016/j.neuroimage.2004.07.051 15. Cox RW。AFNI:用于分析和可视化功能性磁共振神经影像的软件。Comput Biomed Res。1996 年;29(3):162-173。doi: 10. 1006/cbmr.1996.0014 16. Cox RW、Hyde JS。用于分析和可视化 fMRI 数据的软件工具。NMR Biomed。 1997;10(4–5):171-178。doi:10.1002/(SICI)1099- 1492(199706/08)10:4/5<171::AID-NBM453>3.0.CO;2-L 17. fMRI 工具箱的 Group ICA (v4.0c)。神经影像和数据科学转化研究中心。2021 年 5 月 6 日访问。https://trendscenter. org/software/gift/ 18. TReNDS 中心。Docker, Inc.访问日期:2022 年 1 月 13 日。https://hub.docker.com/orgs/trendscenter/repositories 19. 神经影像和数据科学转化研究中心。GitHub, Inc. https://github.com/trendscenter/ 20. Gorgolewski K、Burns CD、Madison C 等人。Nipype:一个灵活、轻量且可扩展的 Python 神经影像数据处理框架。Front Neuroinform。2011;5:13。doi:10.3389/fninf.2011.00013 21. GorgolewskiKJ、AuerT、CalhounVD 等人。Thebrainimagingdatastructure,一种组织和描述神经影像实验输出的格式。Sci Data。2016;3(1):160044。 doi: 10.1038/sdata.2016.44 22. FosterI.Globusonline:通过云服务加速和民主化科学。IEEEInternetComput。2011;15(3):70-73。doi: 10.1109/MIC。2011.64 23. Allen B、Bresnahan J、Childers L 等人。面向数据科学家的软件即服务。Commun ACM。2012;55(2):81-88。doi: 10.1145/2076450.2076468 24. Calhoun VD、Adali T、Pearlson GD、Pekar JJ。一种使用独立成分分析从功能性 MRI 数据进行组推断的方法。Hum Brain Mapp。2001;14(3):140-151。 doi: 10.1002/hbm.1048 25. Allen E、Erhardt E、Damaraju E 等。静息状态网络多变量比较的基线。Front Syst Neurosci。2011;5:2。doi: 10.3389/ fnsys.2011.00002 26. Allen EA、Damaraju E、Plis SM、Erhardt EB、Eichele T、Calhoun VD。跟踪静息状态下的全脑连接动态。大脑皮层。2014;24(3):663-676。doi: 10.1093/cercor/bhs352 27. Ashburner J、Friston KJ。基于体素的形态测量——方法。神经影像学。2000;11(6):805-821。 doi: 10.1006/nimg.2000.0582 28. Fischl B. FreeSurfer。神经影像学。2012;62(2):774-781。doi: 10.1016/j.neuroimage.2012.01.021 29. Andersson JLR、Sotiropoulos SN。一种用于校正扩散 MR 成像中的偏共振效应和受试者运动的综合方法。神经影像学。2016;125:1063-1078。doi: 10.1016/j.neuroimage.2015.10.019 30. Andersson JL、Skare S、Ashburner J。如何校正自旋回波平面图像中的磁化率畸变:应用于扩散张量成像。神经影像学。 2003;20(2):870-888。doi: 10.1016/s1053-8119(03)00336-7 31. Andersson JLR、Graham MS、Drobnjak I、Zhang H、Filippini N、Bastiani M。面向扩散 MR 图像运动和失真校正的综合框架:体积运动内。神经影像学。2017;152:450-466。doi: 10.1016/j.neuroimage.2017.02.085 32. CalhounVinceD、MillerR、PearlsonG、Adal 𝚤 T。Thechronnectome:时变连接网络作为fMRIdatadiscovery 的下一个前沿。神经元。2014;84(2):262-274。 doi: 10.1016/j.neuron.2014.10.015 33. Du Y、Fu Z、Sui J 等人。NeuroMark:一种基于自动化和自适应 ICA 的管道,用于识别可重复的 fMRI 脑部疾病标记物。神经影像:临床。2020;28:102375。doi: 10.1016/j.nicl.2020.102375 34. Griffanti L、Zamboni G、Khan A 等人。BIANCA(脑强度异常分类算法):一种用于自动分割白质高信号的新型工具。神经影像学。2016;141:191-205。doi:10.1016/j.neuroimage.2016.07.018