摘要 - 无人驾驶汽车(UAV)在各种应用中都是必不可少的,包括监视,城市场景分析和农业监测。准确的高度估计对于无人机操作至关重要,尤其是在GPS,压力高度计和雷达等传统传感器可能失败的环境中。本文探讨了红外和热成像的使用,用于对无人机的相对高度估计,从而强调了它们的显着优势,而不是传统的RGB图像。红外和热成像在弱光和不利天气条件下提供了卓越的表现,从而提供了更清晰的可见性和更可靠的特征检测。通过杠杆来使尺度不变特征变换(SIFT)特征,此方法利用热图像的固有优势来估计基于连续图像中匹配的键盘的尺寸变化的高度变化。对两个红外热无UAV数据集的实验结果证明了这种方法的有效性,与暹罗网络结合使用以增强功能匹配,显示出估计准确性的显着提高。索引项 - 临时,红外热图像,无人机,海拔估计,暹罗网络。
摘要——手写签名识别是生物特征认证的关键组成部分,需要稳健高效的特征提取技术才能获得最佳性能。本研究对三种主要的特征提取方法进行了比较分析:局部二值模式 (LBP)、方向梯度直方图 (HOG) 和尺度不变特征变换 (SIFT)。我们使用一个包含 2,000 个签名的精选数据集(包括真实实例和熟练的伪造签名),评估了每种技术在准确性、计算效率和稳健性方面的有效性。我们的研究结果表明,虽然 HOG 表现出卓越的准确性,但 LBP 在计算速度方面表现出色,而 SIFT 则展示了处理各种捕获场景的潜力。这项研究为开发先进的签名识别系统提供了宝贵的见解,强调了定制特征提取对增强生物特征认证的重要性。
关键词:立体匹配,半全局匹配,SIFT,密集匹配,视差估计,普查 摘要:半全局匹配(SGM)通过平等对待不同路径方向进行动态规划。它没有考虑不同路径方向对成本聚合的影响,并且随着视差搜索范围的扩大,算法的准确性和效率急剧下降。本文提出了一种融合SIFT和SGM的密集匹配算法。该算法以SIFT匹配的成功匹配对为控制点,在动态规划中指导路径,并截断误差传播。此外,利用检测到的特征点的梯度方向来修改不同方向上的路径权重,可以提高匹配精度。基于 Middlebury 立体数据集和 CE-3 月球数据集的实验结果表明,所提算法能有效切断误差传播,缩小视差搜索范围,提高匹配精度。
目标受众:对使用扩散 MRI 流线纤维束成像定量评估大脑白质连接感兴趣的研究人员。目的:由于流线重建过程的非定量性质 [1],使用扩散 MRI 定量评估大脑白质连接非常困难。针对该问题提出的解决方案包括启发式校正已知的重建偏差 [2,3](可能无法补偿所有重建误差)或评估连接路径上某些扩散模型参数 [4,5,6](依赖于该参数的量化和可解释性)。最近,提出了球面反卷积信息纤维束成像滤波 (SIFT) 方法 [7],通过选择性去除流线,将重建的流线密度与通过扩散信号球面反卷积估计的单个纤维群体积 [8] 进行匹配;完成此过程后,连接两个区域的流线计数变为连接这些区域的白质通路横截面积的估计值(最高可达全局缩放因子)。之前已证明,如果首先应用 SIFT 方法 [9],大脑连接的定量测量与从人脑解剖估计的特性会更加密切相关。这种方法的缺点是,即使生成了许多流线(计算成本高昂),完成过滤后,流线密度可能非常低(这对于定量分析来说是不可取的 [10,11])。在这里,我们提出了一种替代解决方案,称为 SIFT2:此方法不是去除流线,而是为每条流线得出合适的加权因子,以使总流线重建与测量的扩散信号相匹配。方法:与原始 SIFT 方法一样,我们执行纤维方向分布 (FOD) 分割,将流线分配给它们穿过的 FOD 叶,并得出一个处理掩模,以减少非白质体素对模型的贡献。我们将离散 FOD 叶 L 的积分表示为 FOD L ,将归因于该叶的流线密度表示为 TD L ,将处理掩模 [7] 在该叶所占体素中的值表示为 PM L ;从这些中我们得出比例系数 μ [7](等式 1)。每条流线 S 都有一个关联的加权系数 FS 。FOD 叶 L 中的流线密度定义为(等式 2),其中 | SL | 是流线 S 穿过归因于 FOD 叶 L 的体素的长度。目标是找到一组加权系数 FS ,以最小化成本函数 f(等式 3),其中 λ 是用户可选择的正则化乘数,它将流线加权系数约束为与穿过相同 FOD 叶的其他流线相似(等式 4)。使用迭代线搜索算法可以找到解决方案:每个加权系数都经过独立优化,同时考虑一组相关项,这些相关项表示在对每个系数进行独立牛顿更新的情况下所有 L 的 TD L 的估计变化(等式 5)。数据采集和预处理:图像数据是从健康男性志愿者的 3T Siemens Tim Trio 系统(德国埃尔朗根)上采集的。DWI 协议如下:60 个弥散敏化方向,b =3,000s.mm -2,7 b =0 体积,60 个切片,2.5mm 各向同性体素。使用 MPRAGE 序列(TE/TI/TR = 2.6/900/1900ms,9° 翻转,0.9mm 各向同性体素)获取解剖 T1 加权图像。对弥散图像进行了校正以适应受试者运动 [12]、磁化率引起的扭曲 [13] 和 B 1 偏置场 [14]。使用约束球面反卷积 (CSD) [15] 估计纤维取向分布。使用 iFOD2 概率流线算法 [16] 生成了 1000 万条流线的纤维束图,该算法结合了解剖约束纤维束成像框架 [17] ,随机分布在整个白质中。结果:将 SIFT2 与执行 SIFT“收敛”(移除尽可能多的流线以实现与数据的最佳拟合 [7] )进行了比较。对于 SIFT2,我们使用了 λ = 0.001,这是基于近似 L 曲线分析选择的。SIFT 和 SIFT2 方法都以这样一种方式操纵重建,使得流线密度与通过 CSD 得出的体积估计值高度一致(图 1)。然而,SIFT2 实现了比 SIFT 更优秀的模型拟合,同时保留了初始重建中的所有流线(而 SIFT 必须去除大约 96% 的流线)。根据近似 L 曲线分析选择。SIFT 和 SIFT2 方法都以流线密度与通过 CSD 得出的体积估计值高度一致的方式操纵重建(图 1)。然而,SIFT2 实现了比 SIFT 更好的模型拟合,同时保留了初始重建中的所有流线(而 SIFT 必须删除大约 96% 的所有流线)。根据近似 L 曲线分析选择。SIFT 和 SIFT2 方法都以流线密度与通过 CSD 得出的体积估计值高度一致的方式操纵重建(图 1)。然而,SIFT2 实现了比 SIFT 更好的模型拟合,同时保留了初始重建中的所有流线(而 SIFT 必须删除大约 96% 的所有流线)。