模型结构:我们的方法利用火箭(随机卷积内核变换)算法[4]从陨石光谱中提取数值特征。虽然火箭在时间序列分类中的有效性被广泛认可,但其能力与本研究中光谱分类的挑战非常吻合。反射光谱虽然不是传统的时间序列,但在与时间序列数据具有相似性的波长跨波长中显示顺序模式。火箭的计算效率和对噪声的鲁棒性使其成为此任务的理想选择,在这种任务中,捕获微妙的光谱模式至关重要。它将大量随机初始化的卷积内核应用于光谱,每个卷积内核都有随机参数,例如长度,扩张,偏置和填充物。这种随机化使火箭列出了数据的局部和全局特征,这对于区分光谱模式至关重要。
目的:自乳化药物输送系统 (SEDDS) 具有巨大的潜力,尚未完全实现。它们可用于配制口服脂质给药中水溶性低的药物化合物,并克服与这些化合物相关的许多问题。由于 SEDDS 粒径小、表面积大、包封率高、药物载量高,它可以通过优化药物在肠道吸收部位的溶解度来提高口服吸收的速度和程度。此外,由于其基于脂质的配方,SEDDS 可以加速和增加药物淋巴转运,绕过肝脏首过代谢,从而提高生物利用度。结果与讨论:由于创新的药物开发方法,具有疏水性的新型治疗有效亲脂性分子的数量稳步增加。药物研究的未来可能不仅要发现新的分子,还要更好地利用已知的分子。在提高疏水性和亲脂性药物分子口服生物利用度的策略中,使用 SEDDS 已被证明能非常成功地提高这些化合物的口服生物利用度。关键词:药物溶解度、乳化剂型、亲脂性药物、自乳化、自乳化递送系统
