我们证明,飞秒光脉冲的时间对比度是透明介电内部激光写作的关键参数,允许不同的材料修饰。特别是,二氧化硅玻璃中的各向异性纳米孔由10 7飞秒YB的高对比度产生:kgw激光脉冲,而不是低对比度的10 3 yb纤维激光脉冲。差异起源于纤维激光器,该纤维激光器将其三分之一的能量的能量存储在最高200 ps的脉冲后。通过激光诱导的瞬时缺陷吸收脉冲的这种低强度分数,其寿命相对较长,激发能量(例如自捕获的孔)极大地改变了能量沉积的动力学和材料修饰的类型。我们还证明,低对比度脉冲可以有效地创建层状双重结构,该结构可能是由四极杆非线性库驱动的。
每个点的负高斯曲率和净曲率为0。因此,这种结构补充了平坦的弯曲结构,例如Polyhedra,Tubes和Sheets 1。一种三维碳基材料,其结构在原子上很薄,并且位于TPMS上是称为Schwarzites 2的碳同素异形体的成员。这些材料尚未合成大小,但自1991年以来就已经存在3,4,5,6。schwarzites和类似雪白兰的材料(例如,不隔离的TPMS碳或“碳泡沫”,没有边缘的连续最小表面结构)将具有有趣的特性,例如弹道电气启发性(也许在室温下)与具有最小除外的完全免费结构相结合。这些特性,除了它们的巨大孔隙和高表面积外,还使这些材料成为气体和离子存储应用的关键候选物。
1阿姆斯特丹大学和阿姆斯特丹癌症中心实验与分子医学中心,阿姆斯特丹UMC,1105 AZ Amsterdam,荷兰; m.elmandili@amsterdamumc.nl(M.E.M.); c.a.spek@amsterdamumc.nl(C.A.S.)2阿姆斯特丹大学和癌症中心的实验肿瘤学和放射生物学实验室,阿姆斯特丹,阿姆斯特丹UMC,荷兰阿姆斯特丹1105年; M.F.Bijlsma@amsterdamumc.nl 3 on Code Institute,1105 AZ Amsterdam,荷兰4 Tongji 4 Tongji药学院,华盛顿大学瓦济恩大学科技大学,武汉430030,中国; kongl@hust.edu.cn(L.K.); a.kros@chem.leidenuniv.nl(又称)5实验性临床化学实验室,荷兰阿姆斯特丹1105 AMC临床化学系实验室; r.nieuwland@amsterdamumc.nl 6 Vesicle观察中心,阿姆斯特丹UMC,位置AMC,1105 AZ Amsterdam,荷兰 *通信:E.J.Slapak@amsterdamumc.nl†这些作者分享高级作者。
摘要简介:介孔二氧化硅纳米颗粒(MSNP)被认为是创新的多功能结构,用于靶向药物,由于其出色的物理化学特征。方法:使用SOL-GEL方法制造MSNP,并将聚乙烯甘油-600(PEG 600)用于MSNPS修饰。随后,将Sunitinib(Sun)加载到MSNP中,MSNP-PEG和MSNP-PEG/Sun与粘蛋白16(MUC16)适体接枝。使用ft- ir,tem,sem,dls,xrd,bjh和BET对纳米系统(NSS)进行表征。此外,通过MTT分析和流式细胞仪分析评估了MSNP的生物学影响。结果:结果表明,MSNP具有平均尺寸,孔径和表面积分别为56.10 nm,2.488 nm和148.08 m 2 g -1的球形形状。与SK-OV-3细胞相比,细胞活力结果显示,在MUC16过表达的卵CAR-3细胞中,靶向MSNP的毒性更高。细胞摄取结果进一步证实了这一点。细胞周期分析表明,Sub-G1相阻滞的诱导主要发生在MSNP-PEG/ SUN-MUC16处理过的卵CAR-3细胞和MSNP-PEG/ SUN处理过的SK-OV-3细胞中。DAPI染色显示在MUC16阳性OVCAR-3细胞中暴露于靶向的MSNP时凋亡诱导。结论:根据我们的结果,工程的NSS可以被认为是粘蛋白16过表达细胞的有效多功能药物输送平台。
摘要:在二十一世纪,工程纳米材料(ENM)吸引了兴趣的不断增长,在全球范围内彻底改变了所有工业部门。不断扩大的世界人口和新的全球政策的实施越来越多地推动社会迈向生物经济,重点是促进采用基于生物的纳米材料,这些纳米材料功能性,具有成本效益,并且潜在地暗示在不同领域,包括医疗领域,包括医疗领域。这项研究集中于基于生物的和合成起源的二氧化硅纳米颗粒(SIO 2 -NPS)。SiO 2 -NP由二氧化硅组成,二氧化硅是地球上最丰富的化合物。由于其特征和生物相容性,它们在许多应用中广泛使用,包括食品工业,合成过程,医学诊断和药物输送。使用斑马鱼胚作为体内模型,我们评估了与商用的亲水性粉丝NPS(SIO 2 -AerosiL200)相比,稻壳(Sio 2 -RHSK NPS)的无定形二氧化硅NP的影响。我们评估了在组织化学和分子水平上胚胎暴露于两种纳米颗粒(NP)的结果,以评估其安全性,包括发育毒性,神经毒性和促炎潜能。结果显示了两种二氧化硅NP之间的差异,这表明基于生物的SIO 2 -RHSK NP不会显着影响中性粒细胞,巨噬细胞或其他先天免疫系统细胞。
F. Kotz博士,P。Risch,D。Helmer博士,B。E。Rapp Glassomer Georges-georges-köhler-Allee-Allee 103,79110弗里布尔格,德国,德国电子邮件:Frederik.kotz.kotz.kotz.kotz@glassomer.com工程(IMTEK)弗莱堡大学79110德国弗里堡电子邮件:frederik.kotz@imtek.de F. Kotz博士F. Kotz博士,D。Helmer博士,D。Helmer博士,B。E。Rapp Freiburg材料研究中心(FMF)Freiburg 79104 Freiburg,Dermany freiburg,德国弗里伯格大学Hermann-Von-Helmholtz-Platz 6,76344 Eggenstein-Leopoldshafen,德国
玻璃中飞秒(FS)激光诱导的修饰的种类铺平了通过激光脉冲能的非线性吸收引发的多种结构变化的道路。光眼镜中这些修饰的性质根据激光写参数而变化,并且在文献中将其分为三种主要类型[1]。I型修饰可以观察到较低能量处的折射率的平滑和均匀变化。早期研究表明,FS激光器在硅玻璃中诱导3D折射率分析的潜力,这是创建波导的基础步骤[2]。II型修饰是通过折射率的各向异性变化来区分的。在特定的脉冲持续时间,频率和能量条件下,出现了强烈的双折射,它起源于垂直于激光极化的定期层状纳米结构[3]。在较高的激光强度下,发生了III型修饰,这是由于局部微探索而形成的纳米/微粒子具有致密壳的形成。是II型修饰,与纳米的形成有关。fs激光诱导的纳米射流在几个技术域中发现了广泛的应用。它们在创建长期光学数据存储设备[4,5],热光传感器[6,7]和微流体[8,9]中起着核心作用。重要的是,它们还用于制造各种光学元件,包括波导,光层转化器[10,11]和其他双重元素[12]。尽管其应用的范围很广,但对玻璃中纳米形成背后的机制的全面理解仍有待实现。这是至关重要的,因为它会影响他们的制造,因此在各种技术环境中优化了它们的使用。纳米形成过程的中心是多光子电离的现象,其中光子吸收促进了从入射光到实心玻璃结构的能量转移[13]。由于激光强度超过特定的阈值,它会导致血浆的产生,其特征是高密度自由电子云[14]。入射激光与不均匀性的散射光之间的干扰
由于气候变化的问题不断上升,开发可再生能源和低成本的公用事业尺度存储技术对于减少环境影响至关重要。热量存储(TES)系统提供可扩展,高效和低成本存储的方法,但商业上主要限于用于集中太阳能发电厂。随着可再生能源开发的增加,独立TES系统的商业化变得至关重要。最近的一些研究开始探索沙子作为TES材料的使用。砂,尤其是硅砂,提供了一种丰富的,热稳定和低成本的方法,用于在高达1,200°C的温度下储存热能。当电力不足以满足需求时,可以从二氧化硅砂中排出储存的热量,并通过驾驶电力系统转化为电力。发现阿曼苏丹国的二氧化硅砂被发现是超纯的(> 98 wt%SIO 2);事实证明,国家可再生能源实验室(NREL)的组成具有理想的热性能,以用作TES系统。nrel还提出了一个独立的砂-TES概念,该概念提供了足够的存储能力,更长的排放时间和相比的其他商业储能技术。这项研究分析了利用该沙子系统在DUQM-MOAN中维持500 MW太阳能绿色氨生产厂的整天运行的经济利益,并将其与商业锂电池进行比较。Sand TES系统是间歇性可再生能源存储的有希望的解决方案。结果表明,与使用锂离子电池相比,使用二氧化硅作为TES系统将绿色氢和绿色氨的单位生产成本显着降低了59%和48%,在这种情况下,绿色氢和绿色氨寿命归一化成本降至0.60 US $/kGH 2和0.16 US/KGNH 3。通过沙子系统提供的低成本和丰度将有助于加强可再生能源项目,从而降低清洁能源的成本和可再生能源的产品。
由于纳米粒子具有高比表面积和高表面活性,因此被广泛应用于不同的生物医学应用。7 纳米级载体由于其高稳定性、简便的化学功能、高效的细胞内化和高负载能力,在药物输送方面具有极大的吸引力。8 最近,人们还考虑开发具有不同表面化学和新颖能力的智能多功能纳米平台。9 在此背景下,利用靶向剂(尤其是抗体和适体)进行表面功能化,已被广泛用于高效、特异性地靶向递送纳米载体。10 用于同时诊断和治疗疾病的治疗诊断纳米平台的设计和开发是纳米技术的另一项杰出成就。11
摘要 纳米技术是一种发展迅速且前景广阔的方法,在生物医学和药物治疗应用中引起了广泛关注。在纳米结构材料中,介孔二氧化硅纳米粒子 (MSN) 被有效用作药物输送系统的纳米载体。MSN 可以通过不同的合成技术进行量身设计。它们的形态特征决定了此类材料的应用类型。最近,聚合物基材料已用于对 MSN 表面进行功能化。这些经过修饰的纳米载体装载有药物,并且在暴露于内源性或外源性刺激时可以卸载其“货物”。在本研究中,讨论了不同的靶向概念,包括被动、主动、血管、核和多级靶向。
