摘要:数十年来,肿瘤疗法的问题吸引了许多研究人员的注意。开发新剂型以提高肿瘤学治疗功效并最小化副作用的有希望的策略之一是开发基于纳米颗粒的抗癌药物的靶向运输系统。在无机纳米颗粒中,介孔二氧化硅值得特别关注,因为其出色的表面特性和药物负载能力。本综述分析了影响介孔二氧化硅纳米颗粒(MSN)的细胞毒性,细胞摄取和生物相容性的各种因素,这构成了安全有效的药物输送系统发展的关键方面。对化学修饰MSN的技术方法特别注意以改变其表面特性。还讨论了调节药物从纳米颗粒中释放的刺激,有助于对体内递送过程的有效控制。这些发现强调了通过不同表面函数组,可识别的分子和聚合物在抗癌药物递送系统中的潜在使用的重要性。
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2022 年 10 月 28 日发布。;https://doi.org/10.1101/2022.10.27.513950 doi:bioRxiv preprint
摘要:为了响应日益增长的时间信息处理的需求,神经形态计算系统正在越来越强调备忘录的开关动力学。虽然可以通过输入信号的属性来调节开关动力学,但通过备忘录的电解质特性控制它的能力对于进一步丰富了开关状态并提高数据处理能力至关重要。这项研究介绍了使用溶胶 - 凝胶过程的介孔二氧化硅(MSIO 2)膜的合成,从而可以创建具有可控孔隙率的膜。这些薄膜可以用作扩散的回忆录中的电解质层,并导致可调的神经形态切换动力学。MSIO 2回忆录表现出短期可塑性,这对于时间信号处理至关重要。随着孔隙率的增加,观察到工作电流,促进比和放松时间的明显变化。研究了这种系统控制的基本机制,并归因于二氧化硅层多孔结构内的氢键网络的调节,这在切换事件中显着影响阳极氧化和离子迁移过程。这项工作的结果提出了介孔二氧化硅,作为一个独特的平台,用于精确控制扩散的备忘录中神经形态开关动力学。关键字:介孔二氧化硅,扩散的回忆录,神经形态切换,短期记忆,离子动力学
Colors available on Collette series: Silica 09122386 Alloy 09122430 Burnished 09122452 Cumulus 09122463 Dewpoint 09122496 Ginger 09122518 Haze 09122573 Quartz 09126511 Canyon 09126599 Sands 09143385 Lotus 09143341 Flax 09143308 Chrome 09143429 Shale 09551782 Mineral 09551793 Putty 09551815 Nickel Silica Etch 09157784 Almond 09157795 Barley 09157872 Doe 09157894 Flint 09158048 Wistful Silica Leather 09141438 Almond 09141460 Barley 09141493 Dove 09141515 Dune 09141592 Lichen Silica Tech 09127941 Fog 09127919 Macadamia 09127930 Mineralize 09127941 Paloma 09127963 Sandstone 09127985 Verdigris 09143550 Ash Silica Triad 9203005 Setter 09203016青铜09203027 Brut 09203038 Luster 09203049 Stark 09203060 Ivory 09203071隐藏0920303082 HOVER 09203033 9509179 Pebble 9509047 PUTTY 9509146 MOONSTONE 9509058 ELM 9509025 HICKORY SILICA BLEND 9508475杏仁9508673 Diamond 9508651 Nickel 9508662 Platinum 9508486 Sandstone 9508640 Dove
姜黄素 (Cur) 是从姜黄 (姜黄) 根茎中分离出来的天然多酚化合物,可作为高效生物活性剂治疗多种疾病,如糖尿病、癌症、关节炎和神经系统疾病 1 (图 1)。Cur 的治疗效果主要归因于其抗炎、抗氧化,尤其是抗致癌活性。Cur 已成功用于预防临床癌症,尤其是乳腺癌。2,3 最近,对晚期和转移性乳腺癌患者进行了一项临床试验研究,以评估 Cur 与紫杉醇联合使用的安全性和有效性。4 事实上,Cur 通过诱导活性氧 (ROS) 的产生和增加癌细胞凋亡来抑制癌细胞的生长。5,6 Cur 表现出很高的安全性
极化在光 - 物质相互作用中起着至关重要的作用。因此,其整体操作是解锁光线制造能力的重要关键,尤其是在飞秒激光直接写作中。现有的偏振技术仅着眼于光束横向的操作,即二维对照。在本文中,我们提出了一种新颖的被动策略,该策略利用了一类飞秒激光的书面空间变化的双向元素,以沿光路沿光路塑造极化状态。作为演示,我们生成了一个三维结构化贝塞尔束,其线性极化状态正在沿焦点缓慢演变(典型。60)。这样的“螺旋极化”贝塞尔束允许在SIO 2中印刷“扭曲的纳米射击”,从而在微米尺度上产生外在的光学手性,该刻度具有高光学旋转。我们的工作为三维极化操作带来了新的观点,并将在结构化的光线,轻度互动和手性装置制造中找到应用。
目的.白藜芦醇(Res)由于药代动力学差、稳定性差、溶解度低等特点严重限制了其在乳腺癌的临床应用。因此,本研究旨在开发一种Res的递送系统,以更好地用于乳腺癌的治疗。方法.化学构建白藜芦醇修饰的介孔二氧化硅纳米粒子(MSN-Res)。分别用透射电子显微镜、傅里叶变换红外光谱仪和紫外光谱检测其形状和包封率。通过皮下注射建立MGF-7荷瘤小鼠,用苏木精-伊红染色检测病理变化。CCK-8和Ki-67免疫组织化学染色用于体外和体内增殖评估。流式细胞术、TUNEL、划痕愈合和Transwell实验检测细胞凋亡、侵袭和迁移。结果.成功制备了MSN-Res,具有较高的生物安全性。 MSN-Res 在体外抑制 MGF-7 细胞增殖、侵袭和迁移并促进细胞凋亡。此外,在乳腺癌小鼠模型中,MSN-Res 表现优于 Res。此外,我们发现 MSN-Res 通过抑制 NF- κ B 信号通路抑制肿瘤生长。结论。MSN-Res 通过抑制 NF- κ B 信号通路抑制乳腺癌进展,比单独使用 Res 治疗更有效,提示 MSN-Res 是一种更有效的乳腺癌辅助治疗方法。因此,我们的研究结果可能为在乳腺癌的联合治疗中使用植物化学物质提供一种新的、更安全的方法。
洛斯阿拉莫斯国家实验室是一家采取平权行动/提供平等机会的雇主,由 Triad National Security, LLC 为美国能源部国家核安全局运营,合同编号为 89233218CNA000001。通过批准本文,出版商承认美国政府保留非独占的、免版税许可,可以为了美国政府的目的出版或复制本文的已发表形式,或允许他人这样做。洛斯阿拉莫斯国家实验室要求出版商将本文注明为在美国能源部的支持下完成的工作。洛斯阿拉莫斯国家实验室坚决支持学术自由和研究人员的发表权利;但是,作为一个机构,实验室并不认可出版物的观点,也不保证其技术上的正确性。
环保技术。XRD 测量揭示了晶粒尺寸。SEM、WH 分析辅助 XRD 图案分析。FTIR 分析用于研究非晶态结晶纳米二氧化硅的功能组和键拉伸。光学研究表明,它将增强催化性能,在 UV 范围内具有吸收,带隙在 1.76 eV 范围内。天然来源的磁光设备。结晶纳米二氧化硅、磁性铁氧体和 PVDF 聚合物可用于制造磁性聚合物。XRD 分析揭示了纳米复合材料的形成。发现了磁性聚合物的亚铁磁性。纳米二氧化硅/铁氧体/PVDF 复合材料具有磁滞回线,表明它们可以用作聚合物磁体。
刺激性响应性的“智能”材料可以积极响应外部田地并实时改变其微观或纳米结构,这是灵活显示器中未来技术的基础[1-3],生物传感器[4],有机光发射二极管[5,6]和薄膜膜片摄影膜片呈现图形细胞[7-9]。这些结构响应可以导致物理性质的显着增强,例如光反射率[10-12],热电传导率[13-15]或机械强度[14,15],打开了越来越复杂的应用。热响应聚合物溶液是响应式材料的一个例子,这些材料显示出随温度变化而显示出巨大的微结构响应。表现出较低临界溶液温度(LCST)的聚合物由于溶解度恶化而随着温度的增加而经历构象变化。高于此解散温度,发生宏观相分离。最彻底研究的热响应聚合物溶液之一是水(N-异丙基丙烯酰胺)(PNIPAM)[16] [16],其在接近体温(〜32°C,依赖于聚合物特性)的LCST附近。
