图1:提示制造和光学设置。a)微加工过程。圆柱颗粒是通过激光干扰光刻产生的,蚀刻了一个石英底物,其中沉积了800 nm厚的SIO 2层。HF的调谐酸变薄会在SIO 2层中产生锋利的尖端。然后将粒子机械地裂解底物。b)切割颗粒的扫描电子显微镜图像,其中一个尖端的对比度已得到增强,以清晰度。尖端的曲率半径为35 nm。c)光学陷阱的示意图,固定粒子并用锋利的尖端扫描样品表面。d)示意性光学设置。L/2: half-wave plate, PBS: polarizer, AOM: acousto-optical modulator, NPBS: non-polarizing beam splitter, Exp: beam expander, T1:1 : one to one telescope, Obj: Objective, Cond: Condenser, PD: photodiode (to acquire S z ), PSD: position sensitive detector (to acquire S x,y ), IRCCD: infra red CCD camera, VISCCD:可见的CCD相机。)
医院废水中的药物污染物(HWW)有可能污染水生和陆地自然环境,对水生生物和人类健康构成威胁。这项工作旨在筛选HWW中的一些化学污染物,并评估两种磁性纳米复合材料(Fe 3 O 4 @sio 2和Nife 2 O 4 NCS)的容量,以从HWW中去除这些污染物。用不同的技术描述了制造的纳米复合材料。在处理前后,通过LCMS/ MS和HPLC/ UV筛选收集的HWW样品,以检测某些药物污染物的能力。HWW的筛选结果表明,在水样中发现了属于各种药物的许多不同化合物。两种纳米复合材料在降解中均表现出显着的活性,从而消除了处理过的HWW中高浓度的药物污染物。同时,基于HPLC/ UV分析的数据表明,Nife 2 O 4 nc比Fe 3 O 4 @Sio 2 NC更有效,该nc除去了几种选定化合物的更多峰,表明其减少这些污染物的能力。因此,当前研究的结果为治疗医院废水提供了新的创新有效材料,这可以有助于防止污染物的传播并保留水生环境。
发射:07/01在宇宙射线研讨会上与粒子加速器:100年的CésarLattes,从USP和70年的CERN起了90年的时间”(https://indico.ifsc.usp.br/e/e/lattes100anes)在Ifusp。
• 公开招募新的卫星互联网运营商 (SIO) 在菲律宾进行测试部署,以提前推出计划中的商业服务。 • 此次招募针对运营非地球静止轨道 (NGSO) 互联网卫星的公司。 • 支持 EO 127 s. 2021 提供新的卫星选项 • 支持农村生产力和科学技术,实现包容性发展
我们利用频率调制电荷泵方法快速方便地测量高度缩放的 Si/SiO 2 金属氧化物半导体场效应晶体管中的单个“每周期电荷”。这表明检测和操纵了位于 SiO 2 栅极电介质和 Si 衬底之间边界的单个界面陷阱自旋物种(几乎肯定是 P b 型中心)。在亚微米设备中的演示中,栅极氧化物的 Dennard 缩放产生了极大的栅极氧化物漏电流,消除了电荷泵电流和漏电现象之间的干扰。结果是能够可靠且轻松地测量单个陷阱电荷泵,否则由于氧化物泄漏而完全无法访问。这项工作为单自旋物种检测和操纵提供了一种独特且随时可用的途径,可用作电流的量化标准,也可作为开发量子工程技术的潜在有用平台。最后,我们讨论了产生看似矛盾的每周期电荷奇数和偶数整数值测量值的潜在潜在物理机制。
摘要:这项研究研究了使用表面分析和电化学测量值改善晚期高强度钢(AHS)的磷酸性的最佳腌制条件。要删除在AHS表面形成的SIO 2,将30wt。%NH 4 HF 2添加到腌制溶液中,从而显着减少AHSS表面上的SIO 2的数量。使用腌制溶液中的HNO 3浓度高于13%,可显着提高磷酸性。此外,用基于HNO 3的溶液而不是基于HCl的溶液腌制后,磷酸盐晶体变得更加细致。电化学阻抗光谱(EIS)的数据表明,经受HNO 3的腌制的AHSS的耐腐蚀性高于基于HCl的腌制的AHSS。参与磷酸盐处理过程的氟化合物仅在基于HNO 3的溶液中形成钢表面。F与磷酸盐溶液反应的F化合物增加了大量溶液的pH值,从而大大提高了磷酸性。由于磷酸盐结构的结束和表面粗糙度的增加,在基于HNO 3的条件下,磷酸性比基于HCl的条件更好。
文章历史:将生物燃料与石油柴油机的混合对于环境保护是必不可少的,具有相当大的摩擦学品质,这些品质与压缩 - 点燃(CI)发动机的寿命相同,在节能方面有助于节省。这项工作的目的是通过在美国测试和材料(ASTM)D 4172标准的美国测试和材料协会(ASTM)标准的4孔摩擦仪中研究石油柴油机中纳米辅助的laxmitaru-脂肪酸甲酯(成名)混合物。实验涉及B-10(10%的生物柴油与石油柴油混合),B-20和B-30变体以及整齐的石油柴油。纳米硅二氧化硅(SIO 2)以不同的浓度为0.20%,0.50%,0.75%和1%的二氧化硅(SIO 2),重量为laxmitaru-fame。与整洁的柴油(B0)相比,摩擦系数(COF)的摩擦系数(COF)降低了75%,磨损降低了55%(B0)。通过扫描电子显微镜(SEM)分析了实验球的磨损模式,这表明由于高度稳定的分散体,纳米颗粒在界面上的材料插入和结果修补。
• 公开招募新的卫星互联网运营商 (SIO) 在菲律宾进行测试部署 • 支持 EO 127 s。2021 提供新的卫星选项(下行) • 向太空相邻公司敞开大门(上行) • 研究和发展目标 • 提请关注当前相关的电信法规 • NGSO 公司已发送意向书
15:45 15:50 P11 Filippo Santoni de Sio Designing countering cognitive warfare systems for social media that comply with democratic principles through meaningful human control 15:50 16:45 Panel Discussion 16:45 17:00 Reflections and takeaways 17:00 18:30 Icebreaker at Kanteen25
1.引言 近年来,磁性纳米材料由于其显著的磁性能而引起了人们的极大兴趣,并已在生物和生物医学领域得到实际应用 [1–4]。超顺磁性磁铁矿(Fe3O4)因其超磁性能而被开发为不同生物医学技术的合适候选材料,例如磁共振成像[5–7]、高温治疗[8,9]、药物靶向输送[10–13]、标记、细胞分选[14]和生物制品分离[1,13,15]。已经合成了大量磁性纳米粒子,它们通常由 Fe3O4 磁性纳米粒子和可合成改性的壳组成,例如 SiO2 [16]、Au [17]、LDH [18]、聚甲基丙烯酸缩水甘油酯 [19]、聚苯乙烯 [20] 等。其中,SiO 2 因能保持 Fe 3 O 4 核心的磁性、化学稳定性、生物相容性、表面改性灵活性等优势被广泛认为是最佳的壳层材料[21, 22],且表面分布有大量硅醇基团,可以为有机聚合物、生物活性分子、自由基等提供结合位点[23]。