介绍了一种用于在纳米表面结构上制造 TiN 纳米结构的电感耦合等离子蚀刻工艺。使用 Cl 2 /Ar/N 2 等离子体,在 SiO 2 上可实现 50 的选择性。研究了 N 2 流速对蚀刻速率和 TiN 侧壁上非挥发性残留物的影响。当 N 2 流速增加到 50 sccm 时,观察到 TiN 侧壁上非挥发性残留物的沉积发生变化。介绍了用 TiN 纳米结构侧壁制造的 TiN 器件的电流密度-电压特性。分别用低和高 N 2 流速蚀刻的两个不同样品的测量电流密度表明,仅在低 N 2 流速下,清洁后才会在侧壁上沉积一层绝缘层。VC 2015 美国真空学会。 [http://dx.doi.org/10.1116/1.4936885]
现代纳米电子学的发展依赖于技术进步和能够改善系统性能的新型器件概念。科学家和工程师的不懈努力使得现代集成电路 (IC) 和性能增强器的尺寸不断缩小,从而能够保持 IC 性能的进步 [1,2]。与此同时,人们也投入了类似的努力来开发现代电路中不可或缺的存储器件。然而,为了保持这种进步,需要新型器件。近年来,出现了新的存储器件概念,例如电阻式 RAM (RRAM) [3–6]、自旋转移力矩 RAM (STT-RAM) [7,8]、铁电 RAM (FeRAM) [9] 和相变 RAM (PCRAM) [10]。电阻式 RAM (RRAM) 因其结构简单、能够缩小器件尺寸以实现高密度、低功耗和高速运行而备受关注。它们有可能以并行方式对大量数据进行计算,为了实现如此卓越的性能,人们测试了不同的新型计算范例,例如脑启发计算、内存计算、随机计算和神经形态计算 [11–13]。人们已经测试了各种氧化物材料作为 RRAM 器件中电阻切换层的候选材料 [14–16]。一些工作提出了对 SiO 2 作为这些器件的有前途的材料的研究 [17–20]。在我们最近的研究中,我们表明,Al/SiO 2 /n++-Si 材料堆栈中众所周知的氧化硅也可以表现出电阻切换特性 [21,22]。然而,很少有研究涉及温度对器件性能的影响 [23–25]。在这项工作中,我们研究了温度变化对器件电性能的影响,以研究它们的电传输机制并了解它们的行为。我们分析了电铸电压,并表明它
开发了一种首创的 SiO 2 区域选择性沉积工艺,包括在同一空间原子层沉积 (ALD) 工具中交替曝光小分子抑制剂 (SMI) 和背蚀刻校正步骤的薄膜沉积。这些方面的协同作用导致选择性 SiO 2 沉积高达 ˜23 nm,具有高选择性和高吞吐量,具有 SiO 2 生长区域和 ZnO 非生长区域。X 射线光电子能谱 (XPS) 和低能离子散射光谱 (LEIS) 均证实了选择性。已经通过实验和理论比较了两种不同的 SMI(乙基丁酸和新戊酸)赋予的选择性。密度泛函理论 (DFT) 计算表明,使用两种 SMI 进行选择性表面功能化主要受热力学控制,而使用三甲基乙酸时实现的更好选择性可以通过其比乙基丁酸更高的堆积密度来解释。通过在其他起始表面(Ta 2 O 5、ZrO 2 等)上使用三甲基乙酸作为 SMI 并探测选择性,证明了羧酸抑制剂在不同基底上的更广泛用途。人们认为,当前的结果突出了 SMI 属性的微妙之处,例如尺寸、几何形状和堆积,以及交错的回蚀步骤,这些对于开发更有效的高选择性沉积工艺策略至关重要。
肿瘤免疫疗法是解决常规肿瘤疗法的局限性(例如化学疗法和放疗)的有前途的方法,这些方法通常具有副作用,并且无法防止复发和转移。但是,免疫激活在肿瘤免疫疗法中的有效性和可持续性仍然具有挑战性。肿瘤免疫原性细胞死亡,其特征是免疫原性物质,损伤相关的分子模式(抑制作用)和与肿瘤相关的抗原(DTC)提供了潜在的溶液。通过包含更多免疫原性抗原和刺激因子来增强DTC的免疫原性,可以开发出免疫原性细胞死亡(ICD)癌症疫苗作为免疫疗法的强大工具。将ICD纳米诱导剂整合到常规疗法中,例如化学疗法,光动力疗法,光热疗法,声动力疗法和放射疗法提出了一种新的策略,以增强治疗效果并有可能改善患者结局。临床前研究已经确定了许多潜在的ICD诱导剂。但是,将这些发现有效地转化为临床相关的应用仍然是一个至关重要的挑战。本综述旨在通过为基于ICD的癌症疫苗的体外制备提供宝贵的见解来为这项努力做出贡献。我们探索了既定的ICD归纳工具,然后探索了个性化ICD归纳策略和疫苗设计。通过共享这些知识,我们希望刺激基于ICD的癌症疫苗领域的进一步发展和进步。
摘要 本研究采用射频磁控溅射技术在SiO2/Si基底上沉积铝(Al)薄膜,以分析射频溅射功率对微结构表面形貌的影响。采用不同的溅射射频功率(100–400 W)来沉积Al薄膜。利用X射线衍射图(XRD)、扫描电子显微镜(SEM)、原子力显微镜(AFM)和傅里叶变换红外(FTIR)光谱研究了沉积Al薄膜的特性。X射线衍射(XRD)结果表明,低溅射功率下沉积的薄膜具有非晶性质。随着溅射功率的增加,可以观察到结晶。AFM分析结果表明,300 W的射频功率是生长最光滑Al薄膜的最佳溅射功率。FTIR结果表明,不同的射频功率影响沉积薄膜的化学结构。 SEM结果表明,随着溅射功率的增加,基体表面形成了孤立的纹理。总之,射频功率对沉积薄膜的性质,特别是结晶和形状有显著的影响。
本研究通过采用高介电常数电介质材料来提高19nm单栅极MOSFET的性能。通过采用高K电介质材料代替SiO2,可以满足MOSFET器件尺寸缩小趋势的要求。因此,实现了具有不同高K电介质材料的19nm n沟道MOSFET器件,并分析了其性能改进。通过Silvaco TCAD工具中的ATHENA模块进行虚拟制造。同时,使用ATLAS模块利用器件特性。还对上述材料进行了模拟,并与相同结构的传统栅极氧化物SiO2进行了比较。最后,结果证明,氧化钛(TiO2)器件是金属栅极钨硅化物(WSix)组合的最佳介电材料。该器件 (WSix/TiO2) 的驱动电流 (ION) 在阈值电压 (VTH) 为 0.534 V 时为 587.6 µA/um,而预测的目标值为 0.530 V,并且 IOFF 相对较低,为 1.92 pA/µm。该 ION 值符合国际半导体技术路线图 (ITRS) 2013 年对低性能 (LP) 技术预测的最低要求。
环氧树脂广泛用于电路板层压板、结构复合材料、粘合剂和表面涂层 [1]。热固性聚合物的交联度更高。环氧树脂具有更好的机械、物理和摩擦学性能,因此被用于结构应用。环氧树脂具有高模量、抗疲劳、低蠕变,并且在高温下也能很好地工作 [2-4]。交联密度越高,断裂韧性、抗裂纹起始和生长的刚度越低,这反过来限制了环氧树脂在现代应用中的使用 [5]。在环氧树脂固化过程中,交联链中会产生应力,这会降低断裂韧性、降低抗裂纹起始能力以及由于塑性变形而限制空隙的增长 [6,7]。通过改变环氧树脂的组成并混合不同的纳米填料作为第二阶段,可以应对这些挑战,从而实现高级复合材料应用 [8,9]。环氧树脂与纳米填料的混合可提高断裂韧性、刚度和强度[10]。这些纳米填料包括无机纳米颗粒,如粘土[11]、Al2O3[12]、ZrO2[13,14]和TiO2[4]。加入无机纳米填料如碳纳米管[15]和SiO2[5]后,表现出良好的机械性能,有趣的是,环氧树脂的韧性增加了,而基本性能没有改变。基质形态的变化主要是由于纳米填料渗透到致密的环氧交联网络之间。在目前的研究中,我们尝试生产SiO2/环氧树脂纳米复合材料。选择超声波技术,通过改变纳米填料的浓度来改变填料的粒径。
聚酰亚胺(尤其是 Kapton® 薄膜)在航天器结构中随处可见,可用于多层绝缘 (MLI) 毯 [3-6],因为它们耐用、柔韧、化学惰性,可承受极端温度和辐射条件 [7]。Mylar 是一种聚对苯二甲酸乙二醇酯 (PET),用于航天器外部的 MLI 毯,用于被动热控制目的 [8-10]。多面体低聚倍半硅氧烷 (POSS) 已被提议作为聚酰亚胺 (PI) 基纳米复合材料的增强材料,以提高其热机械和抗 AO 性能 [11,12] 在 AO 暴露下,POSS-PI 会形成一层二氧化硅 (SiO2) 表面层,可抵抗 AO 侵蚀,从而减少本体(即 PI)基质的 AO 侵蚀。Thermalbright°N 就是这样一种结合了 POSS 的材料。
