使用 Mn3O4 八面体制备的 Si 掺杂 LiMn2O4 正极材料增强的 LiBs 电化学性能 朱甘 1、秦明泽 1、吴婷婷*、赵孟远、沈燕生、周宇、苏悦、刘云航、郭美梅、李永峰、赵洪远 * 河南科技学院机电工程学院先进材料与电化学技术研究中心,新乡 453003,中国 * 电子邮件:wtingtingwu@163.com (T. Wu),hongyuanzhao@126.com (H. Zhao) 收到:2022 年 3 月 8 日/接受:2022 年 3 月 28 日/发表:2022 年 4 月 5 日 我们提出了一种 Si 掺杂和八面体形貌的共同改性策略来提高 LiMn2O4 的电化学性能。以Mn3O4八面体为锰前驱体,SiO2纳米粒子为硅掺杂剂,采用高温固相法制备了Si掺杂的LiMn2O4样品(LiSi0.05Mn1.95O4八面体)。XRD和SEM表征结果表明,Si4+离子的引入对LiMn2O4固有的尖晶石结构没有产生实质性影响,LiSi0.05Mn1.95O4八面体呈现出相对均匀的粒径分布。在1.0C循环下,LiSi0.05Mn1.95O4八面体比未掺杂的LiMn2O4表现出更高的初始可逆容量。经过 100 次循环后,LiSi 0.05 Mn 1.95 O 4 八面体表现出更好的循环稳定性,容量保持率高达 94.7%。此外,LiSi 0.05 Mn 1.95 O 4 八面体表现出良好的倍率性能和高温循环性能。如此好的电化学性能与 Si 掺杂和八面体形貌的协同改性有很大关系。关键词:LiMn 2 O 4 ;硅掺杂;八面体形貌;Mn 3 O 4 八面体;电化学性能 1. 引言
具有交错结构(例如蚀刻停止 (ES) 和背沟道蚀刻 (BCE) 结构)的铟镓锌氧化物 (IGZO) 薄膜晶体管 (TFT) 已被证明可用作平板显示器中的电路器件 [1,2]。然而,由于栅极和源/漏极 (S/D) 电极之间的重叠,这些交错结构器件不可避免地具有较大的寄生电容,从而导致 TFT 器件的工作速度较低。自对准 (SA) 共面结构是克服该寄生电容问题的一种有前途的解决方案 [3]。形成导电的 n + -IGZO 以获得有源 S/D 区和 S/D 电极之间的欧姆接触是 SA 共面器件的重要工艺。已经提出了许多用于该工艺的方法,并且制备的 IGZO 器件具有良好的性能。通常使用等离子体处理(Ar、H2 等)[4,5] 和深紫外(DUV)照射 [6] 。然而,这些解决方案需要一个额外的步骤,如图 1a 所示,这会导致额外的工艺成本。在 SiO2 栅极绝缘体(GI)过蚀刻期间形成 n + -IGZO 是一种简单的方法 [7,8]。然而,当 GI 蚀刻等离子体可以蚀刻 IGZO 薄膜时,这种方法并不适用。最近,已经证明通过简单地涂覆有机层间电介质(ILD)可以形成 n + -IGZO 区域,并且获得了 24 Ω·cm 的沟道宽度归一化 S/D 串联电阻(R SD W)[9]。本报告展示了在 ILD 沉积过程中形成 n + -IGZO 区域的可能性。基于这个想法,其他制造低 R SD W SA 共面 IGZO TFT 的新方法值得研究。在这项工作中,我们使用磁控溅射工艺沉积 SiO x ILD 并同时为 SA 共面 IGZO TFT 形成 n + -IGZO 区域。这样,ILD 沉积和 n + 形成可以合并为一个步骤,如图 1b 所示。制造的器件具有相当低的 R SD W 。降低 IGZO 薄膜的机制
摘要响应于对各种工业过程中对更有效传热技术的需求不断增长的需求,纳米流体的发展已成为一种有希望的解决方案。与固体相比,传统的传热液(例如矿物油,乙二醇和水)的热导电性相对较低,从而限制了热交换器的紧凑性和效率。纳米流体是通过在碱流体中悬浮超铁金属或非金属固体粉末而产生的,由于固体材料的较高导电性,其热性能增强。本文回顾了纳米流体的制备,导热率测量和影响因子,重点是导热率,作为改善热传递的主要驱动力。纳米流体的制备涉及一步或两步方法,而两步方法更常用于氧化物纳米颗粒(NPS),例如Al2O3,ZnO,MGO,MGO,TIO2和SIO2。该研究讨论了超声处理和磁力搅动等稳定技术,以确保纳米流体的均匀悬架和长期稳定性。使用短热线(SHW)和瞬态热线(THW)技术进行热导率测量,并考虑了非稳态的性质和潜在的误差源。这项研究强调了严格的实验设计和准确的数据分析的重要性,以解决热导率测量的复杂性和可变性,最终有助于纳米流体技术在有效传热溶液中的发展。关键字:纳米流体,热有限,纳米颗粒,纳米流体的稳定性1。引言不断增长的热流和快速收缩,导致选择了越来越多的有效传热技术。矿物油,乙二醇和水是许多工业过程中不断需要的传热液的例子,包括生产微电子产品,发电,化学反应以及加热和冷却。与大多数固体相比,这些常见流体的低热传递特性是热交换器高紧凑性和效率的关键障碍之一。增加工作培养基的热导电性的一种创造性方法是悬挂普通流体中的超铁金属或非金属固体粉末,因为大多数固体材料都比液体具有优越的导热性。如今,“纳米流体”一词在热传输领域非常明显。的热品质,包括粘度,特定热量,对流传热系数和临界热流,已成为几项研究的主题。
分离是分析化学或化学测量科学的关键步骤,使复杂样品分解为单个成分。通过在空间或时间上分离这些组件,分离通过消除样品基质物种的干扰来提高分析精度。此功率也使净化成为可能进行进一步研究。此外,分离可以通过集中目标成分来扩大后续的分析方法。已建立和成熟的分离技术被广泛用于科学研究中,但是分析任务的复杂性日益复杂,需要先进的技术。这个主题藏品展示了这个不断发展的领域的趋势和特征。高级分离科学对于应对我们今天面临的挑战至关重要。为了反映这一点,我们策划了一个主题收藏,其中包含来自三个主要国家的五篇评论论文和八个研究论文:中国(10篇论文),日本(2篇论文)和美国(1篇论文)。主题分为三类:分离的高级材料,高级方法和潜在应用。讨论的晚期材料包括分子印刷聚合物,金属有机框架,多孔有机框架,纳米颗粒和纳米线。先进的方法涵盖了连字符技术,例如液相色谱串联质谱法,以及纳米颗粒辅助的超滤,阳离子表面活性剂辅助样品制备,磁性固相提取等。前瞻性应用从手性分离到选择性标记,重点是生物学和生物医学研究。这包括对除草剂残基,肽,蛋白质,代谢产物,对映异构体,单链DNA,信使RNA,细胞外囊泡,表观遗传修饰的组蛋白和质量限制样品的分析。两部值得注意的作品强调了分离科学的最新进展。用于捕获富含CPG的SSDNA的基于ZnO/Sio2 Core/shell纳米纤维设备的第一个报告。这在CPG部位的DNA甲基化分析中具有潜在的应用,这是早期癌症检测的有希望的诊断标记。第二次工作提出了一种蛋白质组学方法,用于定量分析雌二醇刺激下MCF-7细胞中表观遗传组蛋白的修饰。这项研究证明了了解雌激素暴露对肿瘤发生和乳腺癌进展的重要性。开发了一种基于氨基酸在细胞培养(SILAC)中稳定的同位素标记的新型定量蛋白质组学方法,用于分析雌激素暴露下MCF-7细胞中的组蛋白的翻译后修饰和蛋白质表达变化。该研究确定了49个组蛋白变异,有42个量化,揭示了两种与乳腺癌相关的差异表达蛋白。对470个组蛋白肽的分析,具有各种修饰,例如甲基化,乙酰化和磷酸化,表明150个差异表达。值得注意的是,组蛋白H10和H2AV影响了核小体结构和基因激活。在雌激素受体(ER)激活后,Kat7的募集可能会影响特定部位的H4乙酰化。此外,HDAC2的表达和核总质转运对于调节组蛋白乙酰化至关重要。这项工作强调了基于LC-MS/MS的定量蛋白质组学在理解组蛋白修饰的生理作用方面的力量。
间隙距离≈50nm时石墨烯的电子密度达到极限。与SiO2等极性电介质材料相比,石墨烯可以在更宽的红外频率区域激发表面等离子体极化子(SPP),为辐射传热增强提供极好的通道。[1,21]精心控制石墨烯的几何形状还可以实现诸如超导体[22]、关联绝缘体[23]、原子级离子晶体管[24]、超薄海水淡化膜[25]等特殊材料。理论上,可以通过多层系统[26–28]通过多表面态耦合(如多个等离子体[29,30]或非互易石墨烯等离子体耦合)进一步增强NFTR。[31]在这里,制备多个石墨烯片的间隙桥接悬浮晶体将允许组织等离子体极化子模式。这些耦合的 SPP 为 NFTR 增强提供了一个非常好的通道,因为近乎完美的光子隧穿概率涵盖了很大范围的横向波矢。石墨烯片具有与线性狄拉克带中的费米能级相关的高度可调的耦合 SPP。调整费米能级可使片间等离子体极化子支持所需中远红外频率区域内的光子隧穿,从而实现优化的 NFTR 增强。然而,制备这种多层悬浮系统具有挑战性。许多支撑材料,如 SiO 2 、Si 或 hBN,会将这些表面模式限制在较小的横向波矢中,因为这些结构的折射率更高且损耗更大。在这里,我们研究了石墨烯/SU8/5 层异质结构 (Gr/SU8/5L),因为 SU8 在中远红外频率区域内与真空在光学上相似(第 S6 部分,支持信息)。调整费米能级可以控制 k 空间中 SPP 的形状,从而控制 NFTR 增强。由于石墨烯 SPP 的强耦合,在两个 Gr/SU8/5L 异质结构之间,间隙距离约为 55 nm 时,与 BB 极限相比,增强了约 1129 倍。据我们所知,顶级相关研究显示,在类似的间隙距离下,增强了(相对于其相应的远场极限,远场极限小于 BB 极限),例如在 ≈ 50 nm 时增强了约 100 倍 [17],在 ≈ 42 nm 时增强了约 84 倍 [18],在 ≈ 50 nm 时增强了约 156 倍 [19]。因此,我们的 Gr/SU8/5L 异质结构在类似的间隙距离下实现了近一个数量级的改进。这种巨大的热传递可能会激发热光伏[32]、热管理[33]和新型通信系统[34]等领域的潜在应用。
工业系统自动化、视觉与控制 (AVCSI) 实验室 阿尔及利亚奥兰科技大学自动化工程系。 ORCID:https://orcid.org/0000-0002-3781-9779 doi:10.15199/48.2023.03.43 使用 3D-TLM 方法和 COMSOL Multiphysics 软件对基于 MEMS 的气体传感器进行微加热器热分析 摘要。带有金属氧化物 (MOx) 的气体传感器为 MEMS 传感器提供了新的机会,因为它们拥塞少、灵敏度高、响应速度快。微热板是这些传感器中控制传感层温度的关键组件。在这项工作中,已经制造并设计了一种蜿蜒的铂基加热器。传输线矩阵 3D-TLM 方法和 COMSOL 软件用于预测均匀的温度分布。因此,在设计任何气体传感器和 MEMS 之前,微加热器热区的温度控制非常重要。压力。使用金属 (MOx) 技术可以将 MEMS 技术与其他技术结合起来。 Płyta grzejna jest kluczowym elementem tych czujników do kontrolowaniaTemperature Warstwy czujnikowej。 W tej pracy wykonano i zaprojektowano Meandrowy grzejnik na bazie platyny。 Metoda 3D-TLM 是一种通过 COMSOL 程序传输的 Macierz 语言,可用于测量温度。控制温度和微机电温度是 MEMS 项目中的一个重要问题。 ( 分析方法 3D-TLM i oprogramowaniem COMSOL Multiphysics dla czujnika gazu MEMS ) 关键词:基于 MEMS 的气体传感器、微型加热器、3D-TLM、COMSOL Multiphysics、均匀温度分布。主题:基于 MEMS 的气体传感器、微控制器、3D-TLM、COMSOL Multiphysics、温度传感器。简介基于 MEMS 的气体传感器(微机电系统)具有相当有趣的特点,例如高灵敏度、低成本和越来越小的尺寸。MOX 传感器是家庭、商业应用和工业安全设备中最主要的固态气体检测设备。然而,这种传感器的性能受到其加热板的显著影响,加热板控制传感层的温度,传感层应在加热器区域所需的温度范围内,以便检测不同的气体。这些传感器是由 Taguchi [1] 首次开发的。它们的工作原理基于金属氧化物层的电导率随周围气体性质的变化而变化。然后,这些传感器的结构可以小型化,因为它们的制造与微电子工艺兼容。这样可以降低成本,并可以将这些传感器和相关电子电路集成到单个组件中。许多研究都集中在微传感器的设计和建模上,例如 M. Dumitrescu 等人 [2] 和 S.Semancik 等人 [3] 的研究,他们在兼容的 SiO 2 平台上引入了多晶硅微加热板平台并集成了片上电路。M. Afridi 等人 [4] 设计了一种带有多晶硅微加热器的单片 MEMS 气体传感器。之后,J. Cerda Belmonte 等人 [5] 描述了检测 O 2 和 CO 气体的制造工艺。2007 年,Ching-Liang Dai 等人 [6] 设计了一种基于 WO3 纳米线的片上湿度传感器,JF Creemer 等人 [7] 提出了一种 TiN 微加热板。而 G.Velmathi 等人 [8] 提出了一种基于 TiN 微加热板的传感器。 [8] 提出了各种微加热器几何形状,M. Gayake、Jianhai Sun [9, 10] 通过有限元法模拟比较了这些基于聚酰亚胺的微加热器几何形状。2017 年,T. Moseley [11] 介绍了半导体金属氧化物气体传感器技术的发展进展,刘奇等人 [12] 综述了基于单层 SiO2 悬浮膜的新型形状微加热板的热性能可能性。R. Jagdeep 等人 [13] 提到
TSV/晶圆级包装交互式介绍II(12月5日下午3:00至4:00p ong ong jun wei Jun Javier Microectronics Institute(IME),新加坡新加坡新加坡1360寄生表面耐受的调查调查2.5d/3d杂物互动的寄生表面对Interposer对Interposer效果的效果3 i II(预期)II(预期) 4:00p ng Yong Chyn微电子学研究所(IME),新加坡新加坡1143 1143晶圆级制造嵌入式冷却溶液在加热设备上使用TSV互连TSV/WAFER级别包装交互式互动式展示II(12月5日3:00 PM至4:00P BOON LONG LONG LONG INTRORE SINTERITE of MICROAPS INTREAPS MICREAPSICERS(MICEAPERES)(IMEAP)(IM)使用计算机视觉进行芯片测量进行芯片到磁力混合键合应用智能制造和设备技术交互式演示II(12月5日3:00 pm至4:00p Rahul Reddy komatireddi应用材料印度1403开发机器人支持的型树脂的开发,用于包装式销售量和设备的热模制工艺,以销售3个启示式智能和设备的热模型(in II)智能和设备的热模型(ind)智能智能式技术(约定) 4:00P Eun-JI GWAK韩国机械和材料研究所韩国1238丝网扫描优化,具有模具工艺模拟(虚拟DOE)智能制造和设备技术交互式演示II(12月5日3:00 PM至4:00p Submanian N.R.
