符号 d tgt 到目标的欧几里德距离(斜距) DC 飞机与图像中心之间的地面半径 DX Y 轴截距与目标之间的地面距离 DY 飞机与 Y 轴截距之间的地面半径 DT 飞机与目标之间的地面半径 F b 机身框架连接到飞机 F c 相机框架连接到相机 F 中心 向心力 F n 北/东/下框架(惯性) g 地球重力加速度 h AGL 目标上方高度(地面以上) h des 所需轨道高度 KD φ 滚转内环微分增益 KD θ 俯仰内环微分增益 KD 外环微分增益 KI h 高度保持积分增益 KP h 高度保持比例增益 KP 外环外环控制器比例增益 KP ˙ ψ 转弯协调器比例增益 KP φ 滚转内环比例增益 KP θ 俯仰内环比例增益 LC 飞机与图像中心之间的斜距 LY 飞机与 Y 轴截距之间的斜距 LT飞机与目标之间的斜距 m 飞机质量 PE 位置向东 PN 位置向北 p 飞机倾斜率 q 飞机俯仰率 r 飞机航向(偏航)率 R 实际轨道半径 ˙ R 实际半径率 R des 所需轨道半径 S x 相机水平分辨率 S y 相机垂直分辨率 t 时间 VA 飞机空速 V CM / e 飞机相对于惯性系的速度 VW / e 风相对于惯性系的速度 V tgt / e 目标相对于惯性系的速度 W 飞机重量 X tgt 目标的 X 坐标 Y tgt 目标的 Y 坐标
摘要:在现代反潜战中,有各种方法可以在二维空间中定位潜艇。为了更有效地跟踪和攻击潜艇,目标的深度是一个关键因素。然而,到目前为止,找出潜艇的深度一直很困难。本文提出了一种利用 DIFAR(定向频率分析和记录)声纳浮标信息(例如在 CPA(最近接近点)时或之前的接触方位和目标的多普勒信号)估计潜艇深度的可能解决方案。通过将勾股定理应用于目标和 DIFAR 声纳浮标水听器之间的斜距和水平距离来确定目标的相对深度。斜距是使用多普勒频移和目标的速度计算出来的。水平距离可以通过对两个连续的接触方位和目标的行进距离应用简单的三角函数来获得。仿真结果表明,该算法受仰角影响,仰角由声纳浮标与目标之间的相对深度和水平距离决定,精确测量多普勒频移至关重要。关键词:深度估计,DIFAR(定向频率分析和记录)声纳浮标,水下目标,多普勒效应
这款拖车的特点如下:-(2) 3500# 制动轴,带分离套件-优质 PolyCore 美国制造 .080 外部-无缝一体式车顶-斜 V 型车头-(2) 外部乘客侧泛光灯-带 LED 灯的后扰流翼-(2) 内部 LED 灯带-全管结构(16oc),带后裙管-升级铝制车轮-带弹簧辅助和木质翻盖的后坡道门-全 LED 灯组-带双锁设计的平锁侧门
% =================================================== % TEC 数据处理软件 % 顾问:Prof.Dr. Pornchai Supnithi % CSSRG 实验室,% 电信工程学院 % 工程学院 % 拉卡邦先皇理工学院 % 泰国曼谷 % ======================================================= % 输出数据:每天 % TEC.vertical = 垂直总电子含量 (VTEC) % TEC.slant = 倾斜总电子含量 (STEC) % TEC.withrcvbias = 带接收器 DCB 的 STEC % TEC.withbias = 带卫星和接收器 DCB 的 STEC % TEC.STECp = 根据代码范围计算的 STEC % TEC.STECl = 根据载波相位计算的 STEC % DCB.sat = 卫星 DCB % DCB.rcv = 接收器 DCB % prm.elevation = 仰角 % ROTI = 速率更改 TEC 指数
石油覆盖方法:该方法可以保留许多细菌和其他生物1个月至2年。在这种方法中,琼脂倾斜生长被无菌和惰性矿物油叠加并储存冷。这种方法的优点是,可以将某些生长去除以接种新培养基而不会污染库存。换句话说,库存可以多次使用。这是在亚文化方法中不可能的。例如,这种方法还会导致孢子形成丧失,有时也会导致生化活性。非孔子模具。最常见的矿物油是液体石蜡。在使用覆盖之前,将其在热空气烤箱中进行180°C灭菌一个小时。
图像增强(点处理):图像负片、阈值处理、有背景和无背景的灰度切片、幂律和对数变换、对比度拉伸、直方图均衡化和直方图规范空间域图像增强(邻域处理):用于图像增强的低通和高通滤波、空间滤波基础、生成空间滤波器掩模 - 平滑和锐化空间滤波图像变换:一维 DFT、二维离散傅里叶变换及其逆变换、二维 DFT 的一些属性、沃尔什-哈达玛、离散余弦变换、哈尔变换、倾斜变换频域图像增强:频域滤波基础、平滑和锐化频域滤波器
在制造过程中管理材料的后勤工作已经经历了革命性的转变,作为SCM的效果。此倾向,将供应链视为统一实体,而不是对购买,生产,分销和销售等功能领域的各个供应链领域的断开责任。尽管普通企业主和运营专家之间在物流和供应链管理的定义上存在不和谐和分歧(Mentzer等,2001)。无论从角度方面的差异如何,就商业从业者和运营专家的定义而言,都意识到,为了提高其有效和快速响应客户需求的能力,他们必须向供应商,供应商的供应商和消费者远远超越自己的业务。
该技术的原理已在之前的报告中描述过,这里不再详细讨论。更多详细信息可参见 Bell et al, 1994, Adrian et aI, 1994 和 Notholt et aI, 1994 及其参考文献。总之,NPL 开发了一种高分辨率光谱仪,在 2.5-13.5 pm(750-4000 cm-1)的中红外光谱区域内,最大光程差为 2.57 m(L\v Iv <3.2 x 1Q-6)。图 3 显示了该仪器的示意图。在本程序过程中,通过使用一系列窄带光学滤波器,该仪器的检测灵敏度得到了提高。此外,该仪器已进行了修改,可以同时在长波长和短波长通道中进行测量。这些改进使 NPL 能够从单个高分辨率光谱测量 CION02 的垂直柱,CION02 是一个非常重要的临时平流层水库,与氯催化臭氧消耗有关,该光谱可在 73 秒内获得。图 4 显示了在 SESAME 活动第一阶段使用 FTIR 仪器获得的光谱示例。从图 4 可以看出,CION02 v 4 Q 分支吸收与 CO2 和 03 吸收线强烈混合。CIONO2 垂直柱的检索需要对应用于具有重叠吸收的其他分子的拟合程序进行重大改进。这需要一个两阶段程序。在第一阶段,H2O、CO2 和 03 特征拟合在宽光谱窗口 (779.0-780.7 cm-1) 上。在第二阶段,CION02 特征拟合在从 779.9-780.3 cm-1 延伸的较窄窗口上。估计的检测限以斜柱表示 (斜柱 = 垂直柱 x 大气质量因子),估计为 2 x 1015 mol cm-2。应该注意的是
摘要 — 雷达遥感高度提取是建筑物检测与识别中一个备受关注的问题。根据对SAR图像中建筑物几何特性的分析,提出了一种基于模型的几何结构预测与匹配策略的高度估计算法。引入距离多普勒方程并对其进行简化,用于倾斜图像平面中建筑物二维几何结构预测。还建立了一个基于指数加权平均值比(ROEWA)的评估函数,用于预测结构与观测到的SAR图像之间的匹配。通过结合遗传算法(GA),最大化评估函数以获得最佳高度参数。使用模拟和真实的机载和星载SAR图像的实验结果表明,所提出的方法可以有效地从单个SAR图像估计建筑物高度,并且在部分遮挡情况下比两种流行的算法取得更好的性能。