1 Broer,S。&Gauthier-Coles,G。哺乳动物细胞中的氨基酸稳态,重点是氨基酸转运。J Nutr 152,16-28(2022)。https://doi.org:10.1093/jn/nxab342 2 Blau,N.,Duran,M.,Gibson,K。M.&Dionisi-Vici,C。遗传代谢疾病的诊断,治疗和随访的医生指南。3-141(Springer-Verlag,2014年)。 3 Holecek,M。为什么饥饿和糖尿病中分支链氨基酸会增加? 营养12(2020)。 https://doi.org:10.3390/nu12103087 4 White,P。J.等。 胰岛素作用,2型糖尿病和分支链氨基酸:一条双向街道。 mol Metab,101261(2021)。 https://doi.org:10.1016/j.molmet.2021.101261 5 Palacin,M。&Broer,S。在医师的诊断,治疗和随访的医师指南中(B.Thorn,M。Duran,M。Duran,K.M.M.M. Gibson和C. Dionisi-Vici)85-99(Springer-Verlag,2014年)。 6 Seow,H。F.等。 hartnup疾病是由编码中性氨基酸转运蛋白SLC6A19的基因突变引起的。 nat Genet 36,1003-1007(2004)。 https://doi.org:10.1038/ng1406 7 Belanger,A。M.等。 抑制中性氨基酸转运以治疗苯酮尿症。 JCI Insight 3(2018)。 https://doi.org:10.1172/jci.insight.121762 8 Belanger,A。J.等。 在鸟氨酸经钙化酶缺乏的小鼠模型中,过量的氮和通过损失SLC6A19的存活增加。 遗传代谢疾病杂志N/A(2022)。 https://doi.org:https://doi.org/10.1002/jimd.12568 9 Jiang,Y。等。3-141(Springer-Verlag,2014年)。3 Holecek,M。为什么饥饿和糖尿病中分支链氨基酸会增加?营养12(2020)。https://doi.org:10.3390/nu12103087 4 White,P。J.等。 胰岛素作用,2型糖尿病和分支链氨基酸:一条双向街道。 mol Metab,101261(2021)。 https://doi.org:10.1016/j.molmet.2021.101261 5 Palacin,M。&Broer,S。在医师的诊断,治疗和随访的医师指南中(B.Thorn,M。Duran,M。Duran,K.M.M.M. Gibson和C. Dionisi-Vici)85-99(Springer-Verlag,2014年)。 6 Seow,H。F.等。 hartnup疾病是由编码中性氨基酸转运蛋白SLC6A19的基因突变引起的。 nat Genet 36,1003-1007(2004)。 https://doi.org:10.1038/ng1406 7 Belanger,A。M.等。 抑制中性氨基酸转运以治疗苯酮尿症。 JCI Insight 3(2018)。 https://doi.org:10.1172/jci.insight.121762 8 Belanger,A。J.等。 在鸟氨酸经钙化酶缺乏的小鼠模型中,过量的氮和通过损失SLC6A19的存活增加。 遗传代谢疾病杂志N/A(2022)。 https://doi.org:https://doi.org/10.1002/jimd.12568 9 Jiang,Y。等。https://doi.org:10.3390/nu12103087 4 White,P。J.等。胰岛素作用,2型糖尿病和分支链氨基酸:一条双向街道。mol Metab,101261(2021)。https://doi.org:10.1016/j.molmet.2021.101261 5 Palacin,M。&Broer,S。在医师的诊断,治疗和随访的医师指南中(B.Thorn,M。Duran,M。Duran,K.M.M.M.Gibson和C. Dionisi-Vici)85-99(Springer-Verlag,2014年)。6 Seow,H。F.等。 hartnup疾病是由编码中性氨基酸转运蛋白SLC6A19的基因突变引起的。 nat Genet 36,1003-1007(2004)。 https://doi.org:10.1038/ng1406 7 Belanger,A。M.等。 抑制中性氨基酸转运以治疗苯酮尿症。 JCI Insight 3(2018)。 https://doi.org:10.1172/jci.insight.121762 8 Belanger,A。J.等。 在鸟氨酸经钙化酶缺乏的小鼠模型中,过量的氮和通过损失SLC6A19的存活增加。 遗传代谢疾病杂志N/A(2022)。 https://doi.org:https://doi.org/10.1002/jimd.12568 9 Jiang,Y。等。6 Seow,H。F.等。hartnup疾病是由编码中性氨基酸转运蛋白SLC6A19的基因突变引起的。nat Genet 36,1003-1007(2004)。https://doi.org:10.1038/ng1406 7 Belanger,A。M.等。 抑制中性氨基酸转运以治疗苯酮尿症。 JCI Insight 3(2018)。 https://doi.org:10.1172/jci.insight.121762 8 Belanger,A。J.等。 在鸟氨酸经钙化酶缺乏的小鼠模型中,过量的氮和通过损失SLC6A19的存活增加。 遗传代谢疾病杂志N/A(2022)。 https://doi.org:https://doi.org/10.1002/jimd.12568 9 Jiang,Y。等。https://doi.org:10.1038/ng1406 7 Belanger,A。M.等。抑制中性氨基酸转运以治疗苯酮尿症。JCI Insight 3(2018)。https://doi.org:10.1172/jci.insight.121762 8 Belanger,A。J.等。 在鸟氨酸经钙化酶缺乏的小鼠模型中,过量的氮和通过损失SLC6A19的存活增加。 遗传代谢疾病杂志N/A(2022)。 https://doi.org:https://doi.org/10.1002/jimd.12568 9 Jiang,Y。等。https://doi.org:10.1172/jci.insight.121762 8 Belanger,A。J.等。在鸟氨酸经钙化酶缺乏的小鼠模型中,过量的氮和通过损失SLC6A19的存活增加。遗传代谢疾病杂志N/A(2022)。https://doi.org:https://doi.org/10.1002/jimd.12568 9 Jiang,Y。等。https://doi.org:https://doi.org/10.1002/jimd.12568 9 Jiang,Y。等。缺乏中性氨基酸转运蛋白B(0)AT1(SLC6A19)的小鼠的FGF21和GLP-1水平升高并改善了血糖控制。MOL METAB 4,406-417(2015)。 https://doi.org:10.1016/j.molmet.2015.02.003 10 Yadav,A。等。 新型化学支架抑制中性氨基酸转运蛋白B(0)AT1(SLC6A19),这是治疗代谢疾病的潜在靶标。 前药11,140(2020)。 https://doi.org:10.3389/fphar.2020.00140MOL METAB 4,406-417(2015)。https://doi.org:10.1016/j.molmet.2015.02.003 10 Yadav,A。等。 新型化学支架抑制中性氨基酸转运蛋白B(0)AT1(SLC6A19),这是治疗代谢疾病的潜在靶标。 前药11,140(2020)。 https://doi.org:10.3389/fphar.2020.00140https://doi.org:10.1016/j.molmet.2015.02.003 10 Yadav,A。等。新型化学支架抑制中性氨基酸转运蛋白B(0)AT1(SLC6A19),这是治疗代谢疾病的潜在靶标。前药11,140(2020)。https://doi.org:10.3389/fphar.2020.00140https://doi.org:10.3389/fphar.2020.00140
精确测量细胞中的机械力是理解细胞如何感知和对机械刺激的反应的关键,这是机械生物学的主要方面。但是,在活细胞中,准确量化单分子水平的动态力是一个重大挑战。在这里,我们开发了基于DNA的福克罗诺探针,以实现活细胞中单分子水平的整联蛋白力动力学的深入研究。通过阐明两个不同的机械点并规避单分子荧光的固有波动,Forcechrono探针可以分析单分子水平的机械力的复杂动力学,例如加载速率和持续时间。我们的结果将先前对细胞载荷速率的广泛估计提高到更精确的范围为0.5至2 pn/s,从而散发出细胞力学的细节。此外,这项研究揭示了整联蛋白力的幅度和持续时间之间的关键联系,这与在体外表现出的接管键行为一致。福克罗诺探针具有不同的优势,例如对单分子力动力学的精确分析以及对荧光波动的耐药性,这将显着提高我们对单分子水平上细胞粘附和机械转移的理解。
图1:检测与SARS-COV-2病毒感染相关的宿主细胞蛋白和基因。a-f:人类胚胎干细胞衍生的心肌细胞(HESC-CMS)(上)和代表性的荧光图像(n = 6个不同的供体的六个不同供体)人类左心室(人LV)组织(人LV)组织(下部)(下)(下)(下)(下)(下)(下)(下)(下)(n = 6),对人类干细胞衍生的心肌细胞(HESC-CMS)(hESC-CMS)(HESC-CMS)(HESC-CMS)(HESC-CMS)(HESC-CMS)(HESC-CMS)(HESC-CMS)(HESC-CMS)(HESC-CMS)(HESC-CMS)进行了代表性荧光共焦图像(n = 3个独立的实验)。用4%甲醛固定细胞和组织,并用针对ACE2(a),TMPRSS2(b),B0AT1(C),Catherepsin B(d),Catherepsin l(e)和Furin(f)的原代抗体进行免疫标记,并与二次抗体conjugody Conjugy conjugugy conjugugy(f) 33342核标记(蓝色)。g:显示仅用二抗和HOECHST 33342核标记处理的对照细胞(上)和组织(下部)。比例尺显示50μm。h:图形数据显示了观察到的hESC-CM种群在可视化后(背景)呈阳性免疫标记的百分比,其靶向针对概述的蛋白质靶标产生的初级抗体的二抗。i:图形数据显示了hESC-CMS中病毒输入和加工基因表达的百万读数(rpm)±SEM(n = 7在三个不同的区分中重复)和人lv(n = 5个个体)。SLC6A19,CTSB和CTSL分别是编码B0AT1,组织蛋白酶B和组织蛋白酶L的基因。
