摘要 - 随着异质整合的发展,结合多个功能的设备的多样性和密度已显着增加。随后的功率使用情况和组件尺寸减小,特别是中央加工单元(CPU)的尺寸凸显了传统冷却的局限性,并揭示了对热管理的显着改善的必要性。在这项研究中,将提出一种创新的流体热冷却溶液,该溶液将提出CPU包装中高密度和非均匀散热的解决方案。解决方案设计包括喷射撞击,用于同时直接冷却四个电子芯片以及芯片连接的微引脚鳍。使用选择性激光熔化(SLM),铜微销鳍已在硅芯片的表面上加在一起制造,从而消除了对热界面材料(TIMS)的需求。在数值上研究了喷射喷嘴尺寸和喷射到芯片距离对传热和流体流量的影响。提出的解决方案显示出具有较低水平的系统复杂性和较低开销的较低的冷却剂和制造的较低水平的潜力。据作者所知,在单相冷却研究区域中,热电阻结果是报告的最低(0.015 k/w)。
作者分支:1分子与比较病理生物学系1,手术系3,肿瘤学系3,悉尼·金梅尔综合癌症中心,乔瓦尼斯综合细胞生物学研究所5号,约翰·霍普金斯大学医学学院,马里兰州巴尔蒂莫尔,马里兰州21205 cellcemology:petney and of call of transcortational and of Translational Cell Institute of Translational Cell Institute of Translational Cell Institute of Translational Biology and Cellsogy:Petne and Celters and Cell。综合癌症中心约翰·霍普金斯大学医学院725 N Wolfe St.,生理学107 Baltimore,MD 21205(443)287-5026 PETER.ESPENSHADE.ESPENSHADE@JHMI.EDU.EDU竞争利益:T.T.T.T.T.T.T.T.S。报告了Amgen Finland的咨询费,是Healthfund Finland Ltd的共同所有人兼首席执行官,临床顾问委员会成员和LS Cancer Diag Ltd的次要利益相关者。 Sol Goldman胰腺癌研究中心(PJE);艾默生集体(PJE);西兰花家庭基金会(RAB);国家科学基金会DGE-1746891(CSK);美国国立卫生研究院,T32GM007445(CSK),T32OD011089(SLM),K08CA248710(RAB)和P30CA006973。
摘要:对采用选择性激光熔化 (SLM) 技术制备的 Inconel 718 (IN718) 高温合金样品进行不同的加热循环,并研究其微观结构特征。选定的加热速率范围从 10 ◦ C / min 到 400 ◦ C / s,代表焊接增材制造试件热影响区 (HAZ) 中的不同区域。采用差示热分析 (DTA)、高分辨率膨胀仪以及激光共聚焦和电子显微镜相结合的方法研究了第二相的析出和溶解以及微观结构特征。为此,从与支撑接触的底部到顶表面研究了增材制造试件的微观结构。结果表明,在高加热速率下,γ”和δ相的溶解延迟并转移到更高的温度下。微观结构分析表明,枝晶间区域的 Laves 相在靠近样品表面的特定区域分解。确定这些区域的厚度和面积分数与施加的加热速率成反比。提出了一种可能的机制,该机制基于加热速率对枝晶间区域和枝晶核心中 Nb 扩散的影响,以解释观察到的微观结构变化。
双光子钙成像技术可以以单细胞分辨率读取活体生物体内大量神经元的活动,从而为大脑如何处理信息提供新的见解。全息光遗传学使我们能够直接触发这些神经元的活动,从而增加了将信息注入活体大脑的可能性。然而,光遗传学触发模拟“自然”信息的活动需要基于功能网络的实时分析来识别刺激目标。我们开发了 NeuroART(实时神经元分析)软件,该软件可以实时读取神经元活动,并集成相关性和同步性以及感官元数据的下游分析。以听觉刺激为例,我们展示了实时推断视野中每个神经元对感官信息处理的贡献。为了避免显微镜硬件的限制并实现多个研究小组的合作,NeuroART 无需修改显微镜控制软件即可利用显微镜数据流,并且与各种显微镜平台兼容。 NeuroART 还集成了驱动空间光调制器 (SLM) 的功能,用于对最佳刺激目标进行全息光刺激,从而实现功能网络的实时修改。用于光刺激实验的神经元是从 Sprague Dawley 雌雄大鼠胚胎中提取的。
摘要:本文旨在回顾学生赛车离合器杆组件的重新设计方法,该组件经过拓扑优化并通过增材制造 (AM) 制造。在拓扑优化 (TO) 过程之前和之后进行了有限元法 (FEM) 分析,以实现优化部件的等效刚度和所需的安全系数。重新设计的离合器杆采用 AM-选择性激光熔化 (SLM) 制造,并由粉末铝合金 AlSi10Mg 打印而成。研究的最终评估涉及重新设计的离合器杆与之前赛车中使用的现有部件的实验测试和比较。使用 TO 作为主要的重新设计工具和 AM 为优化部件带来了重大变化,尤其是以下方面:减轻部件质量 (10%)、增加刚度、保持安全系数高于 3.0 值并确保更美观的设计和良好的表面质量。此外,使用 TO 和 AM 可以将多部件组装成一个由单一制造工艺制造的组件,从而缩短生产时间。实验结果证实了模拟结果,并证明即使施加的负载几乎比假设负载高 1.5 倍,组件上的最大 von Mises 应力仍低于 220 MPa 的屈服极限。
摘要:本文旨在回顾学生赛车离合器杆组件的重新设计方法,该组件经过拓扑优化并通过增材制造 (AM) 制造。在拓扑优化 (TO) 过程之前和之后进行了有限元法 (FEM) 分析,以实现优化部件的等效刚度和所需的安全系数。重新设计的离合器杆采用 AM - 选择性激光熔化 (SLM) 制造,并由粉末铝合金 AlSi10Mg 打印而成。研究的最终评估涉及重新设计的离合器杆与之前赛车中使用的现有部件的实验测试和比较。使用 TO 作为主要的重新设计工具和 AM 为优化部件带来了重大变化,特别是以下方面:减轻了部件的质量 (10%)、增加了刚度、保持安全系数高于 3.0 值并确保了更美观的设计和良好的表面质量。此外,使用 TO 和 AM 可以将多部件组装合并为一个由一种制造工艺制造的单个部件,从而缩短了生产时间。实验结果验证了模拟结果,并证明即使施加的载荷几乎比假设载荷高出 1.5 倍,部件上的最大 von Mises 应力仍然低于屈服极限 220 MPa。
Ti合金由于其出色的结构,机械和生物学特性而在骨修复或再生领域越来越关注。在这项研究中,设计了由简单的立方(结构A)组成的六种类型的具有不同支柱半径的复合晶格结构,以身体为中心的立方体(结构B)和以边缘为中心的立方体(结构C)。首先通过有限元(FE)方法对设计的结构进行模拟和分析。然后通过选择性激光熔化(SLM)制造具有优化单位细胞和Strut半径的商业上纯Ti(CP - Ti)晶格结构,并且表征了尺寸,微观图和机械性能。结果表明,在六种类型的复合晶格结构中,BA,CA和CB结构组合表现出较小的最大von-Mises应力,表明这些结构具有较高的强度。基于应力/特定表面积与支撑杆半径的拟合曲线,BA,CA和CB结构的优化支撑杆半径分别为0.28、0.23和0.30 mm。它们相应的压缩屈服强度和压缩模量分别为42.28、30.11和176.96 MPa和4.13、2.16和7.84 GPA。带有CB单位结构的CP-TI具有与皮质骨相似的强度和压缩模量,这使其成为潜在的软骨下骨修复体的候选者。
Emergency & Exit Luminaires 19 M10 3.2W, 200lm, IP54 20 M20 4.6W, 360lm, IP20/IP40 2 1 M30 5.2W, 560lm, IP40 22 M40 2.8W, 140lm, IP20 23 M50 9.4W, 1050lm, IP65 24 X10 5.2W, 340lm/560lm, IP64, 14-30m 25 X20 5.2W, IP43, 16m 26 X30 3.2W, IP43, 24m 27 X40 5.2W, 340lm/560lm, IP64, 30m 28 X50 2.2W, IP40, 30m 29 X60 5.2W, IP43, 22m 30 X70 3.2W, IP54, 22m 3 1 X80 2.2W/5.2W, IP40, 30m 32 X120 5.2W,IP65,24M 33模块SCM电路34 SPC230三相监控模块34 SLDM25充电模块35 MU05 Luminaire Monitoring Monitoring模块35 IO-模块输入 /输出模块36 38 Wago BMS模块39 SCM12-E单灯具切换40电池电池柜4 1电池监控模块42系统内置详细信息46电池 - OGIV类型47
主动深度传感可实现强大的深度估计,但通常受感应范围的限制。天真地增加光学能力可以改善传感范围,但对许多应用(包括自主机器人和增强现实)的视力安全关注。在本文中,我们提出了一个自适应的主动深度传感器,该传感器可以共同介绍范围,功耗和眼部安全。主要观察结果是,我们不需要将光模式投影到整个场景,而只需要在关注的小区域中,在应用程序和被动立体声深度所需的深度失败的情况下。理论上将这种自适应感知方案与其他感应策略(例如全帧投影,线扫描和点扫描)进行了比较。我们表明,为了达到相同的最大感应距离,提出的方法在最短(最佳)眼部安全距离时会消耗最小的功率。我们用两个硬件原型实现了这种自适应感测方案,一个具有仅相位空间光调制器(SLM),另一个带有微电动机械(MEMS)镜像和衍射光学元素(DOE)。实验结果验证了我们方法的优势,并证明了其能力自适应地获得更高质量的几何形状。请参阅我们的项目网站以获取视频结果和代码:
M. Yamagata(松下汽车系统 /日本)H。Choi(Univ。< / div>of Arizona / USA) Th2A-01 (Invited) (9:00) Liquid Crystal Polarization Holograms for Virtual Reality Displays Z. Li, X. Wang, H. Cheng, L. Lu, and B. Silverstein (Meta Reality Lab / USA) Liquid crystal polarization holograms (LCPH) are polarization-sensitive holograms that can be used in VR applications.他们提供的好处,例如由于其极化选择性而具有色差校正,诸如适应性,凹陷的展示和煎饼腔形成。TH2A-02(9:25)单芯片2维图像转向朝向紧凑型智能AR显示的光学结构Y. Pei,T。 亚利桑那州 /美国的)由mems空间光调制器通过MEMS空间光调节器转向的衍射和反射性混合图像启用了一种新的LIDAR光学体系结构,以时间多发性方式增加SLM的有效像素计数。 TH2A-03(9:40)构造球形表面的环形光刻D. Stumpf,X。Uwurukundo和R. Brunner(Univ。 应用科学的jena /德国)一种采用副群来产生环形光分布的定制光刻工具可用于在球形表面上的光孔中暴露灰度级结构。 TH2A-04(9:55)使用TENG和MAN方法来消除依赖波长的错误Y. Enami(Nagasaki Univ。 10:10-10:20短暂休息10:20-11:30 [TH2B] C2。TH2A-02(9:25)单芯片2维图像转向朝向紧凑型智能AR显示的光学结构Y. Pei,T。)由mems空间光调制器通过MEMS空间光调节器转向的衍射和反射性混合图像启用了一种新的LIDAR光学体系结构,以时间多发性方式增加SLM的有效像素计数。TH2A-03(9:40)构造球形表面的环形光刻D. Stumpf,X。Uwurukundo和R. Brunner(Univ。应用科学的jena /德国)一种采用副群来产生环形光分布的定制光刻工具可用于在球形表面上的光孔中暴露灰度级结构。TH2A-04(9:55)使用TENG和MAN方法来消除依赖波长的错误Y. Enami(Nagasaki Univ。10:10-10:20短暂休息10:20-11:30 [TH2B] C2。/ Japan)我们使用传输方法测量了EO聚合物的高度精确的电光(EO)系数,从而克服了TENG和MAN反射椭圆测量方法的局限性,并提高了EO研究中的可靠性和准确性。光学组件 /设备室:ILC120主持人:K。Konno(柯尼卡美能达 /日本)TH2B-01(被邀请)(10:20)(10:20)从IR到深层紫外线的双重弹光谱,用于表征激光< / div> < / div>