我们如何到达月球?美国宇航局强大的 SLS(太空发射系统)火箭将把四名宇航员送上猎户座飞船,从地球飞到月球轨道,飞行距离为 25 万英里。在首次登陆任务阿尔忒弥斯三号上,猎户座飞船将直接与商业着陆系统对接,该系统将把两名宇航员送上月球表面进行探险,然后送回猎户座飞船。对于阿尔忒弥斯四号及以后的任务,猎户座飞船将把机组人员送往门户月球空间站,他们将在那里登上着陆器,并在完成表面探险后返回。门户将成为深空科学的平台和月球表面任务的中转站。当任务的月球部分完成后,机组人员将乘坐猎户座飞船返回地球。早期的阿尔忒弥斯载人任务包括
• K1S 100 系列采用 10 cm x 10 cm x 10 cm 的外形尺寸,适用于 2U 及以上的 CubeSat / SmallSat 或更大的卫星。• 电气可配置性:4S-2P(见上文规格)和(2S-4P,上文未显示)• 电源和通信:航天级 Glenair 连接器• 热量:0 至 40°C(2025 年将随着加热器集成而扩展)• 振动 / 冲击:NASA SLS 环境 / GEVS• 安全性:符合 JSC 20793 修订版 D。现成的 20793 将于 2025 年春季上市(交付前需要进行飞行验收测试)。• 质量:所有电池组均采用 NASA JSC WI-37A 屏蔽电池构成,无论选择哪种电池。采用 MOLICEL 18650-M35A 构建的电池组由具有相关 NASA 初始批次评估 (ILA) 和批次验收测试 (LAT) 的电池构成。
点火和分级控制器 (ISC) 为固体火箭助推器发动机点火和运载火箭/导弹分级分离事件提供烟火点火能量。ISC 可与标准一欧姆启动器接口,并符合 NASA 标准启动器标准。该装置能够满足低压启动器电流和能量要求,并可连接极长的电缆。ISC 使用电容放电点火电路,无需专用烟火电池,从而简化了航空电子设备架构。ISC 具有独特的双故障容错功能,专为高度可靠的载人 NASA 太空发射系统 (SLS) 飞行器而设计。ISC 设计为可在线更换的装置,其独特的模块化设计允许根据特定任务要求配置点火电路数量。ISC 还可用于各种航天器烟火驱动部署和分离应用。
增材制造使复杂结构得以制造。粉末床熔合(PBF)是制造具有高度可控几何形状的复杂结构的代表性AM技术。它涉及选择性激光熔化(SLM)、选择性激光烧结(SLS)和电子束熔化(EBM),具体取决于热源和原材料。材料类型、拓扑类型、几何特征和工艺参数对PBF结构力学性能的影响至关重要。此外,通过拓扑优化获得的大多数声学/光学/机械超材料都可以通过PBF样品实现,相关的设计原理和实施方案。此外,PBF制造的复杂部件的可靠性对于实际应用至关重要,这主要与长期使用性能有关。以上所有内容以及PBF的其他相关内容将是拟议专刊的主题。欢迎为PBF研究提供分析、数值和实验技术的投稿。
坚定目标对于实现美国的深空目标至关重要。新政府和国会应共同延续前几届政府和国会确立的扩大美国在太空领域领导地位的愿景,将月球作为登陆火星的垫脚石。通过充分利用 SLS,包括探索上面级、猎户座飞船和支持它们的探索地面系统;以及目前正与国际和商业伙伴共同开发的月球门户和载人着陆系统,NASA 将学会在距地球三天远的另一个行星上生活和工作,在深空建立永久的人类存在,同时利用人类探索和空间科学之间的协同作用。ii 在未来几十年里,保持 NASA 在实现这些关键功能的国家项目和其他公私合作伙伴关系或商业收购之间的平衡将至关重要。
摘要。超材料是一种经过设计的材料,具有天然材料所不具备的特性,这为创造具有全新功能的材料提供了广泛的机会。膨胀材料是一种超材料,它的独特之处在于它们被设计成具有负泊松比,而天然材料具有正泊松比。膨胀材料已经显示出一些非常有前途的能量吸收特性,可广泛应用于汽车(碰撞吸收器、悬架部件)、医药(假肢)、服装(鞋底)等领域。此外,它们还表现出优于传统材料的其他特性,例如:剪切模量增加、声学性能更好、断裂韧性提高等。介绍了在 CATIA V5 软件中建模的方法以及使用 3D 打印技术(如 MSLA(掩模立体光刻设备)、选择性激光烧结 (SLS) 和熔融沉积成型 (FDM))的各种制造方法。
氟化物制剂 Clinpro 5000 Denta 5000 plus Denta 5000 plus 敏感 Dentagel Fluoridex 日常防御 Fluoridex 增强美白 Fluoridex 敏感缓解 Fluoridex 敏感缓解/sls 免费 Fluorimax 5000 Fluorimax 5000 敏感 Just right 5000 Prevident 5000 booster plus Prevident 5000 口干 Prevident 5000 牙釉质保护 Prevident 5000 儿童 Prevident 5000 ortho 防御 Prevident 5000 plus Prevident 5000 敏感 Prevident 氟化物 Prevident 冲洗 Sf Sf 5000 plus 氟化钠 氟化钠 5000 plus 氟化钠 5000 ppm 氟化钠 5000 ppm 口干 氟化钠 5000 ppm 牙釉质保护 氟化钠 5000 ppm 敏感 钠氟化物/硝酸钾/敏感
1。简介选择性激光烧结(SLS)是一种添加剂制造(AM)技术,它通过使用激光在每个计算机辅助设计(CAD)文件的切片中使用激光在粉末状聚合物材料的床上选择性地融化3D模型(图。1a)。SLS的常用聚合物是多酰胺11和12粉,使用温度范围为150-185°C [1-2]。Recently semi-crystalline PEEK of varied LS-grade powders with a melting temperature (T m ) of 343-370°C, were heated up to 380°C to be manufactured into 3D objects by a more elaborate high temperature laser sintering (HT-LS) machine and process, affording PEEK components with a glass transition temperature (T g ) of 150°C [3-4].然而,与传统处理的材料相比,这些热塑性聚合物构建的3D物体的强度通常很弱,这是因为它们由AM加工产生的固有较高的孔隙率以及在Z方向上缺乏聚合物链间连接。因此,对于250-300°C的热固性聚合物开发激光烧结过程至关重要,对航空应用使用能力。最近,将热固性二甲酰亚胺树脂与热导电碳微气泡混合在一起,以提高其激光可吸收性以成功激光烧结[5]。为了克服树脂的低粘度,标准的RTM370树脂在300°C进一步加热2-3小时,以通过促进链扩展,同时仍保持融化融化性处理性,从而提高粘度,从而避免在树脂内部反应性PEPA端盖进行广泛的交联。Initially we have attempted to print a melt-processable RTM370 thermoset polyimide oligomer powder terminated with reactive phenylethynylphthalic (PEPA) endcaps by laser sintering into a 3D objects [6], but soon realized the viscosity of the material originally developed for resin transfer molding (RTM) was too low, and the laser seemed only melted the resin without固化反应性PEPA端盖,从而导致带有空隙的标本。进一步上演的RTM370能够以LS的完整性进行3D打印样品(图1b)。
Systems Corporation,制造了第一个可用的3D打印机[3]。在90年代晚些时候,在德克萨斯大学(University of Definess Advance Advance Advance Projects Agency)进行的项目开始期间,德克萨斯大学的Deckard博士合成了选择性激光烧结(SLS)技术[4]。在20世纪,3D打印机非常昂贵,并用于打印一些产品。大多数打印机均由科学家和电子集团进行研究和展示。但是,3D打印(3DP)区域的进步已允许设计产品不再受复杂形状或颜色的限制。已开发了具有不同功能的3D打印技术的品种。根据ASTM标准F2792 [5],ASTM将3D打印技术分类为七组,包括粘合剂喷射[6],定向能量沉积[7],材料挤出[8],材料
3D 打印是一个新兴领域,它在科学和工业框架中的重要性逐年增加。1 相关应用范围从航空航天 2、3 到生物医学工程 4、5,还涉及电子、6、7 机械 8-10 和许多其他领域。11-13 在可用于 3D 打印的不同材料中,聚合物占据了市场的大部分份额,发挥着重要作用。14 自 80 年代第一台立体光刻设备 (SLA) 开发以来,人们开发了不同的技术,涉及使用不同形式的聚合物材料,即线材或糊状物(熔融沉积成型 - FDM)、粉末(选择性激光烧结 - SLS)或光固化配方(SLA 及其演变数字光处理 - DLP)。正如文献中广泛报道的那样,这些技术各有优缺点,15 尤其是基于光的技术以最快和最高效而闻名