机械活性蛋白对于无数生理和病理过程至关重要。在单分子力谱 (SMFS) 技术的进步的指导下,我们已经在分子水平上了解了几种机械活性蛋白如何响应机械力。然而,即使是 SMFS 也有其局限性,包括在力加载实验中缺乏详细的结构信息。这就是分子动力学 (MD) 方法大放异彩的地方,它以飞秒时间分辨率提供原子细节。然而,MD 严重依赖于高分辨率结构的可用性,而大多数蛋白质都无法获得高分辨率结构。例如,蛋白质数据库目前已存储 192K 个结构,而 Uniprot 上有 231M 个蛋白质序列。但许多人打赌这个差距可能很快就会缩小。在过去的一年里,基于人工智能的 AlphaFold 首次能够根据蛋白质序列预测近乎天然的蛋白质折叠,从而在结构生物学领域引起了轰动。对于某些人来说,AlphaFold 正在推动结构生物学与生物信息学的融合。从这个角度来看,使用计算机模拟 SMFS 方法,我们研究了 AlphaFold 结构预测在研究葡萄球菌粘附蛋白的机械性能方面的可靠性。我们的结果表明,AlphaFold 可以产生极其可靠的蛋白质折叠,但在许多情况下无法准确预测高分辨率蛋白质复合物。尽管如此,结果表明 AlphaFold 可以彻底改变对这些蛋白质的研究,特别是通过允许高通量扫描蛋白质结构。同时,我们表明 AlphaFold 结果需要验证,不应盲目使用,否则可能会获得错误的蛋白质机制。
机械活性蛋白对于无数生理和病理过程至关重要。在单分子力谱 (SMFS) 技术的进步的指导下,我们已经在分子水平上了解了几种机械活性蛋白如何响应机械力。然而,即使是 SMFS 也有其局限性,包括在力加载实验中缺乏详细的结构信息。这就是分子动力学 (MD) 方法大放异彩的地方,它以飞秒时间分辨率提供原子细节。然而,MD 严重依赖于高分辨率结构的可用性,而大多数蛋白质都无法获得高分辨率结构。例如,蛋白质数据库目前已存储 192K 个结构,而 Uniprot 上有 231M 个蛋白质序列。但许多人打赌这个差距可能很快就会缩小。在过去的一年里,基于人工智能的 AlphaFold 首次能够根据蛋白质序列预测近乎天然的蛋白质折叠,从而在结构生物学领域引起了轰动。对于某些人来说,AlphaFold 正在推动结构生物学与生物信息学的融合。从这个角度来看,使用计算机模拟 SMFS 方法,我们研究了 AlphaFold 结构预测在研究葡萄球菌粘附蛋白的机械性能方面的可靠性。我们的结果表明,AlphaFold 可以产生极其可靠的蛋白质折叠,但在许多情况下无法准确预测高分辨率蛋白质复合物。尽管如此,结果表明 AlphaFold 可以彻底改变对这些蛋白质的研究,特别是通过允许高通量扫描蛋白质结构。同时,我们表明 AlphaFold 结果需要验证,不应盲目使用,否则可能会获得错误的蛋白质机制。
机械活性蛋白对于无数生理和病理过程至关重要。在单分子力谱 (SMFS) 技术的进步的指导下,我们已经在分子水平上了解了机械活性蛋白如何感知和响应机械力。然而,即使是 SMFS 也有其局限性,包括在力加载实验中缺乏详细的结构信息。这正是分子动力学 (MD) 方法大放异彩的地方,它以飞秒时间分辨率提供原子细节。然而,MD 严重依赖于高分辨率结构数据的可用性,而大多数蛋白质都无法获得这些数据。例如,蛋白质数据库目前存储了 192K 个结构,而 Uniprot 上有 231M 个蛋白质序列。但许多人认为,这一差距可能很快就会缩小。在过去的一年里,基于人工智能的 AlphaFold 能够根据蛋白质序列预测近天然蛋白质折叠,从而在结构生物学领域引起了轰动。对于一些人来说,AlphaFold 正在促成结构生物学与生物信息学的融合。在这里,我们使用我们小组首创的计算机模拟 SMFS 方法,研究 AlphaFold 结构预测在研究葡萄球菌粘附蛋白的机械性能方面的可靠性。我们的结果表明,AlphaFold 可以产生极其可靠的蛋白质折叠,但在许多情况下无法准确预测高分辨率蛋白质复合物。尽管如此,结果表明 AlphaFold 可以彻底改变对这些蛋白质的研究,特别是通过允许对蛋白质结构进行高通量扫描。同时,我们表明 AlphaFold 结果需要验证,不应盲目使用,否则可能会获得错误的蛋白质机制。
摘要 - 输入法是各个领域中使用最广泛的研究技术之一。通过在光纤上实施干涉仪,光纤干涉仪(FOIS)在过去的四十年中已经获得了巨大的生长和进步,并已探索以测量各种物理,化学,化学和生物学参数。FOI通常是使用单模纤维(SMF)构建的,并使用具有紧密控制的极化状态(SOP)在光学结构域中询问,以确保促进感应应用的高质量干扰信号。单模操作以及SOP的严格要求阻碍了敌人的进一步发展,例如,基于多模纤维(MMF)基于基于的FOI。在本文中,我们介绍了基于光纤的微波光子干涉仪的全面研究,该研究基于最近开发的技术,基于光载体的微波干涉仪(OCMI)。由OCMI审问(即微波炉干涉仪)启用了所提出的感应配置,从本质上讲,通过在微波域中读取FOIS来克服传统FOI的两个限制方面。微波炉干涉仪对光载体SOP的变化免疫,并且对光纤类型(SMFS和MMF)的依赖性较低。我们提出了微波仪干涉系统的完整数学模型。使用SMF和多模聚合物光纤的应变测量验证了所提出的系统的传感能力。然后,使用三种不同类型的干涉仪进行验证,包括Mach-Zehnder干涉仪,Fabry-Perot干涉仪和基于SMFS和MMFS的Michelson干涉仪。微波仪的干涉构构可以在各种传感应用中进一步扩展FOIS的路径。
摘要:使用计算机模拟研究了 4 层和 8 层带深柱的钢特殊弯矩框架 (SMF) 的抗震倒塌行为。所使用的模型能够模拟局部和整体不稳定性,并明确表示侧移和垂直倒塌行为。研究了影响框架倒塌潜力的三个关键因素:(1) 柱侧向支撑;(2) 柱重力荷载水平;(3) 柱截面特性。结果表明,即使满足当前的抗震规定,深柱也会遭受早期整体不稳定,导致在相对较低的位移水平下垂直系统倒塌。研究结果表明,可以通过限制外柱的轴向荷载水平、仔细选择构件尺寸以限制柱的深度厚度和整体细长度以及提供足够的侧向支撑来改善弯矩框架的性能。有人认为,柱缩短本身是一种良性效应,不会影响适用性或导致设计良好的框架倒塌。 DOI:10.1061/(ASCE)ST.1943-541X.0002150。© 2018 美国土木工程师学会。
摘要:本文报道并实验证明了一种基于微球嵌入法布里-珀罗干涉仪 (FPI) 的高灵敏度、低温度串扰应变传感器。该传感器通过将微球嵌入锥形空芯光纤 (HCF) 中而制成,而光纤的两端由两根标准单模光纤 (SMF) 包围。在 SMF/HCF 界面和微球表面发生的反射导致三光束干涉。通过控制锥形 HCF 的直径和嵌入微球的尺寸可以灵活改变形成的 FPI 的腔长,并且反射光谱的最大消光比 (ER) 大于 11 dB。这种新颖的微球嵌入 FPI 结构显著提高了传统 FPI 在应变测量中的传感性能,可提供 16.2 pm/με 的高应变灵敏度和 1.3 με 的分辨率。此外,还证明了该应变传感器具有0.086 με/ o C的非常低的温度-应变交叉敏感性,大大增强了在精密应变测量领域的应用潜力。
摘要:开发了一种基于微腔纤维马赫德 - Zhhnder干涉仪的新型无标签光纤生物传感器,并实际上证明了用于DNA检测的。使用偏置剪接标准通信单模纤维(SMF)制造生物传感器。传感器的光路径受偏置开放腔中液体样品的影响。在实验中,在折射率(RI)测量中实现了-17,905 nm/riU的高灵敏度。在此基础上,探针DNA(pDNA)使用APTES固定在传感器表面上,从而实现了捕获的互补DNA(cDNA)样品的实时监测。实验结果表明,生物传感器的高灵敏度为0.32 nm/fm,检测限为48.9 AM。同时,传感器具有高度可重复和特定的性能。这项工作报告了易于制造,超敏感和无标签的DNA生物传感器,该生物传感器在医学诊断,生物工程,基因识别,环境科学和其他生物领域中具有重要的潜在应用。
受贻贝黏附蛋白的启发,聚多巴胺 (pDA) 已成为最广泛使用的材料表面功能化方法之一,部分原因是将 pDA 薄膜浸入多巴胺的碱性水溶液中后,大多数材料上都会沉积一层多功能、简单和自发性薄膜。然而,过去十年来,pDA 在表面改性方面的快速应用与人们对 pDA 成分的了解速度缓慢形成了鲜明对比。人们为阐明这种迷人材料的形成机制和结构进行了无数次尝试,但几乎没有达成共识,这主要是因为 pDA 具有不溶性;这使得大多数传统的聚合物分子量表征方法都无效。[1] 在这里,我们采用了非传统的单分子力谱 (SMFS) 方法来表征 pDA 薄膜。将涂有 pDA 的悬臂从氧化物表面拉回时,会显示出聚合物的特征,轮廓长度可达 200nm。 pDA 聚合物在其大部分轮廓长度上通常与表面结合较弱,偶尔会出现“粘性”点。我们的研究结果为 pDA 的聚合物性质提供了第一个直接证据,并为理解和调整其物理化学性质奠定了基础。
toehold介导的链位移的单分子力光谱Andreas Walbrun 1,*,Tianhe Wang 2,*,Michael Matthies 2,Petršulc2,3,Friedrich C. Simmel 2,+ Matthias Rief,Matthias Rief 1慕尼黑技术大学生物科学系综合蛋白质科学中心(CPA),Ernst-Otto-Fischer-STR。8,85748德国Garching。 电子邮件:matthias.rief@mytum.de 2。 慕尼黑技术大学,TUM自然科学学院,生物科学系,AM COULOMBWALL 4A,85748 GARCHING,德国。 电子邮件:simmel@tum.de 3。 亚利桑那州立大学生物设计学院的分子科学和分子设计与生物仪中心,美国亚利桑那州南卡利斯特大街1001号,美国亚利桑那州坦佩市85281,美国 *这些作者同样贡献:安德烈亚斯·沃尔布伦(Andreas Walbrun) (TMSD)在动态DNA纳米技术中广泛使用,并且是多种基于DNA或RNA的反应电路的基础。 以前的研究通常依赖于散装荧光测量值来研究TMSD的动力学,该动力学仅提供有效的,散装平均的反应速率,并且无法在单个分子甚至碱基对的水平上解决该过程。 在这项工作中,我们使用单分子力光谱(SMF)探索单分子水平的链位移过程的动力学,并具有由最先进的粗粒元模拟支持的光学陷阱。 此外,我们使用力研究了DNA入侵RNA的动力学,这一过程很少发生力。8,85748德国Garching。电子邮件:matthias.rief@mytum.de 2。慕尼黑技术大学,TUM自然科学学院,生物科学系,AM COULOMBWALL 4A,85748 GARCHING,德国。电子邮件:simmel@tum.de 3。亚利桑那州立大学生物设计学院的分子科学和分子设计与生物仪中心,美国亚利桑那州南卡利斯特大街1001号,美国亚利桑那州坦佩市85281,美国 *这些作者同样贡献:安德烈亚斯·沃尔布伦(Andreas Walbrun) (TMSD)在动态DNA纳米技术中广泛使用,并且是多种基于DNA或RNA的反应电路的基础。 以前的研究通常依赖于散装荧光测量值来研究TMSD的动力学,该动力学仅提供有效的,散装平均的反应速率,并且无法在单个分子甚至碱基对的水平上解决该过程。 在这项工作中,我们使用单分子力光谱(SMF)探索单分子水平的链位移过程的动力学,并具有由最先进的粗粒元模拟支持的光学陷阱。 此外,我们使用力研究了DNA入侵RNA的动力学,这一过程很少发生力。亚利桑那州立大学生物设计学院的分子科学和分子设计与生物仪中心,美国亚利桑那州南卡利斯特大街1001号,美国亚利桑那州坦佩市85281,美国 *这些作者同样贡献:安德烈亚斯·沃尔布伦(Andreas Walbrun) (TMSD)在动态DNA纳米技术中广泛使用,并且是多种基于DNA或RNA的反应电路的基础。以前的研究通常依赖于散装荧光测量值来研究TMSD的动力学,该动力学仅提供有效的,散装平均的反应速率,并且无法在单个分子甚至碱基对的水平上解决该过程。在这项工作中,我们使用单分子力光谱(SMF)探索单分子水平的链位移过程的动力学,并具有由最先进的粗粒元模拟支持的光学陷阱。此外,我们使用力研究了DNA入侵RNA的动力学,这一过程很少发生力。通过探测toehold结构的发夹的末端,我们可以通过微秒和纳米分辨率实时触发和观察TMSD。使用微流体测定法,我们将发夹暴露于触发链的溶液中,我们发现在负载下,TMSD的进行非常迅速,单步时间为1 µs。将不匹配引入入侵者序列使我们能够调节稳定性,以使入侵和重新染色在均衡中也发生,即使在负载下也是如此。这使我们能够在单个分子上研究数千个入侵/入侵事件,并分析入侵过程的动力学。将我们的发现推送到零载荷,我们发现DNA入侵DNA的单步速度比入侵RNA快的速度快四倍。我们的结果揭示了序列效应对TMSD过程的重要性,并且对于核酸纳米技术和合成生物学的广泛应用至关重要。关键字:肋骨调节器,脚趾介导的链位移,分支迁移,单分子力光谱