Hedgehog (HH) 通路在胚胎发育、组织稳态和致癌作用中起着至关重要的作用 [1,2]。HH 配体通过与受体 patched 1 同源物 (PTCH1) 结合来激活信号转导。在没有 HH 配体的情况下,PTCH1 会阻止 Smoothened (SMO) 将信号传递给下游胶质瘤相关致癌基因同源物 (GLI) 转录因子。HH 配体与 PTCH1 结合,解除 PTCH1 对 SMO 的抑制,使 SMO 向下游效应物 GLI 发出信号,GLI 通过特定的基因组 DNA 序列 (TGGGTGGTC) 激活靶基因 [3,4]。通过 HH–PTCH1–SMO 轴激活 GLI 蛋白被视为典型的 HH 信号通路。除经典途径外,一些分子可以绕过配体-受体信号轴来激活 GLI,这些类型的调节被视为非经典 HH 信号。非经典 HH 信号存在于恶性疾病中。据报道,KRAS 信号 [ 5 , 6 ]、转化生长因子 β (TGF β ) [ 7 ]、AKT [ 8 ]、蛋白激酶 C (PKC) [ 9 ] 和 SOX2-溴结构域蛋白 4 (BRD4) [ 10 ] 通过非经典途径调节 HH 信号。化疗广泛应用于癌症治疗,并显著改善患者的预后。然而,并非所有患者都能从中受益。化疗耐药成为癌症治疗的一大障碍,因为内在耐药发生在治疗开始时甚至治疗之前,或在治疗初次起效后发生获得性耐药,导致复发[11,12]。铂类、5-氟尿嘧啶 (5-FU) 和吉西他滨是胃癌、结直肠癌和胰腺癌化疗中最常用的药物,其耐药机制已被研究。化疗耐药的机制包括癌症干细胞 (CSC)、肿瘤微环境和 ATP 结合盒 (ABC) 转运蛋白家族蛋白[13-15]。我们小组研究了胃肠道癌症的耐药性,发现 HH 通路是导致耐药性的原因之一。本综述重点介绍 HH 通路与胃肠道癌症耐药性之间关系的最新进展,并研究可能克服 HH 介导耐药性的新药物和策略。
● Goal: truly multi vendor solution ● Standardised open interfaces ● Vertical and horizontal disaggregation ● Three O-RAN Alliance RAN functions: O-RU, O-DU, O-CU (CP and UP) ● Other key elements: RIC and SMO ● O-RAN Alliance nomenclature for Cloud Platform: O-Cloud
3 A - 208/3/60、L - 230/3/60、H - 460/3/60、C - 575/3/60、D - 200/3/50、E - 400/3/50、F - 380/3/60、S - 220/230/1/60、V - 其他 4 A - 风冷、C - 远程冷凝器、D - 冷凝机组、H-热回收、R - 热泵 5 A - 钎焊 SS、B - 钎焊 SMO、C- S&T 铜、D - S&T 铜镍、O - 其他远程、R-MS 远程、V - 其他、N-无 6 A - 铜管铝翅片、B - 铜管铜翅片、C- 微通道、V - 其他 7 A - 无、B - 青铜辉光、H - Heresite、E - 电翅片、S -标准,V - 其他 8 E-ECM 风扇,H - 高静态,L - 单风扇,S - 标准,V - 其他 9 A - 钎焊 SS,B - 钎焊 SMO,E - 双壁钎焊,N - 无,V - 其他 10 R-410A、R-134a、407c
基于 SMO 薄膜的电导式气体传感器必须加热到高达 550 ◦ C 的温度,才能在 SMO 薄膜表面启动分子吸附过程。通常使用铂作为微加热器材料。这些设备的长期可靠性主要与微机电系统 (MEMS) 结构的机械稳定性有关,该结构用于将微加热器悬浮并与其他集成组件(例如模拟和数字电路)热隔离。然而,先前的研究表明,电迁移和热迁移现象可能会加剧铂微加热器中的应力积累并导致其最终失效。在本文中,我们提出了一种方法来量化空位传输对电迁移和热迁移现象下两种新型微加热器设计中应力积累的影响。第一个设计旨在提高温度均匀性,第二个设计旨在微加热器阵列操作,利用高温度梯度同时在不同的传感器位置提供多个温度。我们的分析表明,热迁移力远高于电迁移力,这意味着这些器件中的高热梯度对空位传输的贡献远大于电子风引起的原子传输。此外,我们计算出,在典型操作条件下,我们提出的设计具有很强的抗空位迁移失效能力,平均失效时间约为 10 15 秒。
多学科操作,连接基本和有用的研究以及解决各个建筑领域的实际问题,我们在国内外都得到认可。我们是Enbri(欧洲建筑研究机构网络)和FEHRL(欧洲国家公路研究实验室)的活跃成员。后者Zag在2023 - 26年的主席。我们充当行业与研究之间的联系,并在我们的活动的不同领域中与最先进的技术直接接触我们的公司。我们在ECTP(欧洲建筑技术平台),ERTRAC(欧洲公路运输研究委员会)和E2BA(能源效率建筑物)中运营。在欧盟研究领域的融合以及与原材料领域的大学和工业建立联系,作为EIT原材料的合作伙伴(欧洲技术,知识和创新研究所 - Rawmaterias)。她的机构是知识和技术三角形中知识和技术的加速转移:研究 - 印度教育。
ABL1 AKT1 AKT3 ALK AR AXL BRAF CCND1 CDK4 CDK6 CTNNB1 DDR2 EGFR ERBB2 ERBB2 ERBB3 ERBB3 ERG ESR1 ESR1 ETV1 ETV1 ETV4 ETV4 ETV5 ETV5 ETV5 ETV5 FGFR1 MAP2K2 MET MTOR MYC MYCN NRAS NTRK1 NTRK2 NTRK3 PDGFRA PIK3CA PPARG RAF1 RAS ROS1 SMO
[来源]日本开发的新海外药物中只有30%:“药物滞后:日本未经批准的药物及其特征”,Opir News No.63(2021年7月),制药行业研究办公室(OPIR);临床试验中的配方数量等。 :根据日本药品制造商协会网站的数据计算;药品销售市场规模:由公司根据2024年全球使用IQVIA估算; CRO和SMO市场规模:基于日本CRO协会网站的数据; MRS的数量:由日本先生和认证中心根据“白皮书2024先生”估算;广告促销市场:公司根据上市制药公司的平均广告与净销售比率估算63(2021年7月),制药行业研究办公室(OPIR);临床试验中的配方数量等。:根据日本药品制造商协会网站的数据计算;药品销售市场规模:由公司根据2024年全球使用IQVIA估算; CRO和SMO市场规模:基于日本CRO协会网站的数据; MRS的数量:由日本先生和认证中心根据“白皮书2024先生”估算;广告促销市场:公司根据上市制药公司的平均广告与净销售比率估算
图1。示意图显示癌细胞持续生长,存活,侵袭和耐药性涉及的分子机制。APC,腺瘤性息肉大肠杆菌; CDK,细胞周期蛋白依赖性激酶; CER,神经酰胺; EGF,表皮生长因子; EGFR,表皮生长因子受体; FZD,卷曲受体; IGF,胰岛素样生长因子; IGF-1R,胰岛素样生长因子1受体; LEF,淋巴增强因子; LPR,低密度脂蛋白受体相关蛋白; MAPK,有丝分裂原激活的蛋白激酶; MEK,细胞外信号相关激酶激酶; NBD,核苷酸结合结构域; NF-KB,核因子-KB; PI3K,磷脂酰肌醇30-激酶; PLC-G,磷脂酶C-G;嘘,声音刺猬; SM,鞘磷脂; Smo,平滑; TCF,T细胞因子; UPA,尿激酶纤溶酶原激活剂; Wnt,无翅。APC,腺瘤性息肉大肠杆菌; CDK,细胞周期蛋白依赖性激酶; CER,神经酰胺; EGF,表皮生长因子; EGFR,表皮生长因子受体; FZD,卷曲受体; IGF,胰岛素样生长因子; IGF-1R,胰岛素样生长因子1受体; LEF,淋巴增强因子; LPR,低密度脂蛋白受体相关蛋白; MAPK,有丝分裂原激活的蛋白激酶; MEK,细胞外信号相关激酶激酶; NBD,核苷酸结合结构域; NF-KB,核因子-KB; PI3K,磷脂酰肌醇30-激酶; PLC-G,磷脂酶C-G;嘘,声音刺猬; SM,鞘磷脂; Smo,平滑; TCF,T细胞因子; UPA,尿激酶纤溶酶原激活剂; Wnt,无翅。
ALK (4) NRAS (2) ARID1A (1) NRG1 (2) ATM (2) NTRK (6) ATR (1) P53 (1) BRAF (15) PALB (1) BRCA (2) PDGFR (2) CCND (1) PIK3 (5) CDK4/6 (1) POLD1 (2) CDKN2 (1) POLE (2) ctDNA (3) PRKC (2) CTNNB1 (1) PTCH1 (2) DDR (5) RAF (2) EGFR (10) RAS (2) ERK (2) RET (4) EWSR1 (1) ROS1 (5) EZH2 (1) SMO (1) FBXW7 (1) STK11 (1) FGFR (4) TAF15 (1) GNAQ/11 (2) TMB (4) HRD (7) TP53 (1) IDH (2) TSC (1) KIT (2) UGT1A1 (1) KRAS (24) CCNE1 (1) MDM2 (1) CLDN (3) MEK (3) FET (1) MET (5) FRa (1) MMR (2) FUS (1) MRD (2) HER2 (12) MSI-H (1) MAGE (2) MTAP (4) MUC (1) MYC (1) PD-L1 (12) Nectin-4 (2) PRAME (1) NF1 (6)
摘要简介:髓母细胞瘤(MB)是小脑的异质肿瘤,分为四个具有不同分子和临床特征的主要亚组。Sonic刺猬MB(SHH-MB)是遗传学上最了解的,主要发生在童年时期。当前的疗法由侵略性和非靶向多模式方法组成,这些方法通常无效并引起长期并发症。这些问题加剧了开发分子靶向疗法以改善预后并减少与治疗相关的病因的需求。在这种情况下,刺猬(HH)信号传导是一种发育途径,其放松管制涉及几种恶性肿瘤的发病机理,已成为一种有吸引力的SHH-MB治疗途径。涵盖的领域:本综述概述了HH拮抗剂研究领域的进步。我们强调平滑(SMO)和与神经胶质瘤相关的癌基因同源物(GLI)抑制剂和免疫疗法方法,这些方法在临床前SHH-MB模型中得到了验证,并且对MB患者具有治疗潜力。PubMed的文献和有关临床术报告的数据。政府截至2020年8月。专家意见:广泛的摩西分析增强了我们的知识,并改变了MB的研究和管理方式。SMO拮抗剂的临床使用尚未确定,但是,未来的GLI抑制剂和多静脉对方法有希望。