摘要:基于P300的大脑 - 计算机界面(BCIS)中使用的奇数范式本质上构成了目标刺激和非目标刺激之间的数据不平衡问题。数据不平衡会导致过度解决问题,从而导致分类性能差。本研究的目的是通过通过抽样技术解决此数据不平衡问题来提高BCI性能。将采样技术应用于控制门锁的15个受试者的BCI数据,15个受试者是电灯,14名受试者是蓝牙扬声器。我们探索了两类采样技术:过采样和不足采样。过采样技术,包括随机过度采样,合成少数族裔过采样技术(SMOTE),边界效果,支持矢量机(SVM)SMOTE和自适应合成抽样,用于增加目标刺激类别的样品数量。不足的采样技术,包括随机不足采样,邻里清洁规则,Tomek的链接和加权式采样袋,用于降低非目标刺激的班级大小。通过SVM分类器对过度或不足的数据进行了分类。总体而言,某些过采样技术改善了BCI性能,而不足采样技术通常会降低性能。尤其是,使用边界效果产生了所有三种电器的最高精度(87.27%)和信息传输率(8.82 bpm)。此外,边缘效果会提高性能,尤其是对于表现不佳的人。进一步的分析表明,边界效果通过在目标类别中产生更多的支持向量并扩大边缘来改善SVM。然而,边界效果与应用SVM加权正规化参数的方法之间的准确性没有差异。我们的结果表明,尽管过采样提高了基于P300的BCI的性能,但它不仅是过采样技术的效果,而且是解决数据不平衡问题的效果。
1.2欺诈检测的数据预处理技术:为了准备欺诈检测算法的原始交易数据,需要数据准备。由于欺诈交易通常比真正的交易少很多,因此处理不平衡的数据集是一个主要的困难。可以纠正这种不平衡,例如在采样,过采样(SMOTE)或使用合成数据之类的方法。为了提高模型精度,数据清洁技术消除了噪声,处理丢失的变量并标准化数据。功能缩放确保每个输入功能对学习过程做出同等的贡献。通过适当的预处理提高了欺诈检测模型的有效性,从而确保模型从清晰,平衡的数据中学习正确的模式。
摘要 - 这项研究探讨了扩展现实(XR)产品,特别关注Apple Vision Pro,以阐明消费者的看法和这些创新技术的基本社会动态。这项研究深入研究了扩展现实(XR)产品,专门针对Apple Vision Pro,旨在了解消费者的看法和围绕这些创新技术的社会动态。通过利用情绪分析和社交网络分析(SNA)以及Crisp-DM和SVM算法,本研究为XR社区内的情感模式,网络结构和影响力因素提供了全面的见解。采用多方面的方法来实现研究目标。情感分析和SNA剖析情感模式和XR社区内的网络结构。CRISP-DM框架指导研究过程,确保系统的数据分析和解释。SVM算法对观点进行了分类,提供了一个强大的分析框架,以了解消费者对XR产品的情感。分析对XR消费者的看法和社会动态产生了重大见解。计算出的网络指标,包括密度为0.000124,不存在互惠,集中度为0.001331和模块化值为0.999000,XR社区中关键网络动态的启示。检查经常使用的单词在XR话语中揭示了普遍的主题,为理解消费者的情感提供了宝贵的背景。相比,具有SMOTE的SVM的精度为81.82%,精度为97.58%。此外,对SVM算法的评估表明了值得称赞的性能指标,而SVM没有SMOTE的准确率为84.33%,精度为84.67%,召回99.28%,F_Measure的召回率为91.39%。这项研究为XR产品的消费景观提供了宝贵的见解,主要关注Apple Vision Pro。通过结合情感分析,SNA和既定方法,该研究对XR社区内的消费者看法和社会动态提供了细微的理解。这些发现为战略决策提供了依据,并为XR技术的进步做出了贡献,为情感分析技术在理解消费者情感方面的功效提供了宝贵的见解。
1,2,3,4 B.Tech学生,计算机科学系,米高梅工程学院。5指南,助理。教授(Mtech。B.E. ),部门 MGM工程学院计算机科学与工程师。 摘要信用卡欺诈已成为对金融部门的重大威胁,这是在线交易的快速增长和欺诈活动不断发展的复杂性的推动下。 本研究旨在设计和实施基于机器学习的解决方案,能够有效地检测欺诈性信用卡交易。 通过应对数据集不平衡和误报等挑战,该研究采用了包括合成少数群体过采样技术(SMOTE)在内的预处理技术,以及高级机器学习算法,例如逻辑回归,XGBOOST和隔离林。 它突出了这些模型增强欺诈检测准确性和可扩展性的潜力,为现实世界应用提供了一种实用且可部署的工具。 这种全面的方法可确保该系统稳健,自适应和用户友好,为改善金融安全和数字支付系统的信任铺平了道路。 关键字:信用卡欺诈检测,机器学习算法,数据不平衡1。 简介B.E.),部门MGM工程学院计算机科学与工程师。摘要信用卡欺诈已成为对金融部门的重大威胁,这是在线交易的快速增长和欺诈活动不断发展的复杂性的推动下。本研究旨在设计和实施基于机器学习的解决方案,能够有效地检测欺诈性信用卡交易。通过应对数据集不平衡和误报等挑战,该研究采用了包括合成少数群体过采样技术(SMOTE)在内的预处理技术,以及高级机器学习算法,例如逻辑回归,XGBOOST和隔离林。它突出了这些模型增强欺诈检测准确性和可扩展性的潜力,为现实世界应用提供了一种实用且可部署的工具。这种全面的方法可确保该系统稳健,自适应和用户友好,为改善金融安全和数字支付系统的信任铺平了道路。关键字:信用卡欺诈检测,机器学习算法,数据不平衡1。简介
摘要 - 糖尿病(DM)是一个全球健康问题,必须尽早诊断出来,并得到很好的管理。本研究提出了使用机器学习(ML)模型进行糖尿病预测的框架,并配有可解释的人工智能(XAI)工具,以投资ML模型的预测的预测准确性和解释性。数据预处理基于糖尿病二进制健康指标数据集中使用的合成少数群体过采样技术(SMOTE)和特征缩放数据集,以处理临床特征的类别失衡和可变性。整体模型提供了高精度,测试精度为92.50%,ROC-AUC为0.975。BMI,年龄,一般健康,收入和体育锻炼是从模型解释中获得的最有影响力的预测因素。这项研究的结果表明,与XAI结合的ML是开发用于医疗保健系统中使用的准确和计算透明工具的一种有希望的方法。
摘要在医学人工智能(AI)领域,数据偏见是影响数据收集,处理和模型构建的SEV阶段的主要困难。在此评论研究中,对AI中常见的许多形式的数据偏差进行了彻底检查,传递了与社会经济地位,种族和种族有关的偏见,以及机器学习模型和数据集中的偏见。我们研究了数据偏见如何影响医疗保健的提供,强调它可能会使健康不平等恶化并危害AI驱动的临床工具的准确性。我们解决了减少AI中数据偏差的方法,并关注用于创建合成数据的不同方法。本文探讨了几种缓解算法,例如Smote,Adasyn,Fair-Smote和Bayesboost。优化的贝内斯式算法已被解散。这种方法显示出更准确性,并解决了错误处理机制。
将机器学习 (ML) 技术集成到车载自组织网络 (VANET) 中,可为自动驾驶和 ITS 应用提供有前景的功能。本文使用 DSRC 数据来评估不同 ML 模型(包括朴素贝叶斯、随机森林、KNN 和梯度提升)在正常和对抗场景中的有效性。由于数据集相对不平衡,因此采用合成少数过采样技术 (SMOTE) 进行采样,并采用防御性蒸馏来提高模型对对抗性扰动的弹性。从结果中可以清楚地看出,梯度提升和随机森林等模型在两种情况下都表现出很高的准确性,从而表明在出现新威胁时使用机器学习来提高 VANET 安全性和可靠性的潜力。通过这项研究,阐明了 ML 在保护车辆通信方面的应用对于提高交通安全和流量的重要性。
13方法:本研究使用模仿IV数据库分析重症监护患者的结果,14个重点是成人败血症病例。采用最新的数据提取工具,例如Google Big-15查询,并且按照严格的选择标准,我们在本研究中选择了38个功能。此选择16还通过全面的文献综述和临床专业知识来告知。数据预处理17包括处理丢失值,重组分类变量以及使用合成Mi-18诺元过采样技术(SMOTE)来平衡数据。我们评估了几种机器19学习模型:决策树,梯度提升,XGBOOST,LIGHTGBM,多层观察者20 TRON(MLP),支持向量机(SVM)和随机森林。使用了顺序减半和21个分类(SHAC)算法进行高参数调整,并且使用了火车测试拆分22和交叉验证方法来进行性能和计算效率。23
我们开发了一个机器学习(ML)框架,以预测接受MV的ICU患者的医院死亡率。使用MIMIC-III数据库,我们通过ICD-9代码确定了25,202名合格患者。我们采用了向后消除和套索方法,根据临床见解和文献选择了32个功能。数据预处理包括消除超过90%丢失数据的列,并为其余缺失值使用平均插补。为解决阶级失衡,我们使用了合成的少数群体过度采样技术(SMOTE)。我们使用70/30火车 - 策略分开评估了几种ML模型,包括Catboost,XGBOOST,DECOMAL TROED,随机森林,支持向量机(SVM),K-Nearest邻居(KNN)和Logistic回归。在准确性,精度,召回,F1得分,AUROC指标和校准图方面,选择了Catboost模型的出色性能。
网络入侵检测系统 (NIDS) 是现代网络安全框架的重要组成部分,旨在检测和缓解网络内的恶意活动。本研究探索了人工智能 (AI) 技术(包括机器学习 (ML) 和 DL)的应用,通过准确的入侵检测来提高网络安全。使用 CIS-CICIDS2017 数据集,采用了全面的预处理流程,包括数据清理、基于 SMOTE 的平衡、最小-最大规范化和特征选择。随机森林 (RF) 模型表现出优异的性能,准确率为 99.90%,精确率为 97.78%,召回率为 97.08%,F1 得分为 97.41%。与决策树 (DT)、堆叠 LSTM 和 AdaBoost 模型的比较分析突出了 RF 在检测和分类网络流量方面的稳健性。未来的研究旨在优化特征工程并探索混合 AI 模型,以改进动态网络环境中的实时入侵检测。