在本期的《临床与分子肝病学》杂志上,Lee 和同事 1 发表了一篇题为“抑制磷酸肌醇 3-激酶 (PI3K)/蛋白激酶 B (AKT) 信号传导可通过 Snail/糖原合酶激酶 3/β-catenin 通路抑制肝细胞癌 (HCC) 中的上皮-间质转化 (EMT)”的文章,其中描述了一种使用 PI3K 抑制剂抑制 HCC 发展的治疗方法,该抑制剂专门针对 EMT。EMT 是一个高度动态的过程,发生在正常胚胎发育和癌症转移过程中。2,3 它需要间质转化的关键驱动因素,包括 EMT 激活转录因子 (EMT-TF),例如 Snail、Twist 和 Zeb 家族的成员。虽然 EMT-TF 已知参与癌症转移,但它们也在癌症起始和化学耐药性中发挥作用,因此它们与不良的临床结果有关。4 EMT-TF 在肿瘤发生中的多效性作用源于它们与多种癌症信号通路相关,包括 Wnt/β-catenin、生长因子、转化生长因子-β、Notch、炎症和缺氧通路,这可导致这些转录的刺激
越来越多的肥料在洋葱种植中可以治疗农业可持续性。迫切需要环保的替代肥料。其中之一是局部微生物(LMO),它是从废物/天然材料中开发的,例如虾壳和金色的蜗牛。虾壳含有N,P,K,C,Mg和Fe的营养。黄金蜗牛对水稻植物是危险的害虫,但可以用作有机肥料。本研究旨在确定给予虾壳和黄金蜗牛的LMO对葱的生长和产量的影响。该实验使用了随机块设计,八种治疗方法,四种复制,即没有LMO,1.2 g植物-1 NPK肥料; 250毫升,300毫升和350毫升虾壳LMO; LMO金色蜗牛250毫升,300毫升和350毫升。结果表明,提供虾壳和金蜗牛的局部微生物能够增加葱的生长和产量,这表明植物高度,叶子数量,新鲜重量和每植物的干重。块茎干重的增加范围为130%至239%(比对照组高2.3倍至3.4倍)。
摘要目的:这项研究的目的是探索punicalagin的抗癌作用,Punicalagin是一种从Punica Granatum L.分离出的丰富的生物活性单宁化合物,在三种结肠癌细胞系上,即HCT 116,HT-29和LOVO。研究设计:在不同时期内用不同浓度的Punicalagin处理正常和结肠癌细胞。数据收集和分析:用CCK-8测定法测量细胞活力。使用膜联蛋白V和细胞死亡试剂盒和细胞入侵分析试剂盒分析了程序性细胞死亡和侵袭。通过蛋白质印迹测量了活性caspase-3,MMP-2,MMP-9,蜗牛和slug的表达。结果:细胞活力分析的结果表明,punicalagin对结肠癌细胞是细胞毒性的,但这不是以剂量和时间依赖性方式对正常细胞的细胞。此外,Punicalagin诱导结肠癌细胞的凋亡(如早期和晚期凋亡中结直肠癌细胞的累积百分比所示)。发现caspase-3治疗后caspase-3活性增加。Western印迹结果还表明,Punicalagin增加了激活的caspase-3的表现。相反,Punicalagin抑制了结肠癌细胞的侵袭。 此外,用Punicalagin治疗结肠癌细胞抑制了MMP-2,MMP-9,蜗牛和SLUG的表达。 结论:这些结果表明,caspase-3的激活以及MMP-2,MMP-9,Snail和Slug的抑制参与了Punicalagin对结肠癌细胞的影响。相反,Punicalagin抑制了结肠癌细胞的侵袭。此外,用Punicalagin治疗结肠癌细胞抑制了MMP-2,MMP-9,蜗牛和SLUG的表达。结论:这些结果表明,caspase-3的激活以及MMP-2,MMP-9,Snail和Slug的抑制参与了Punicalagin对结肠癌细胞的影响。
在普吉特声音区域的湖泊生态系统中的砷毒性,一些湖泊的生态系统已被Asarco铜冶炼中的金属污染。尽管长达世纪的手术于1985年结束,但目前尚不清楚重金属毒素,砷对湖泊的影响。基拉尼湖含有最高水平的砷污染,钢湖含有中等水平的砷,而鳟鱼湖是砷含量最小的参考。周围是藻类和微生物的生长,与每个湖中不同物种相比,砷的积累最高。利用了以普里普休顿为食的无处不在的淡水蜗牛物种,中国神秘蜗牛(CMS),这项研究检验了以下假设:CMS肠道肠道组织中的生物蓄积将较高,生物传播基因将由于其高含量而产生的生物转化基因会流行。ICP-MS用于测量来自不同CMS组织的Trout Lake和Killarney湖中的现场收集样品中的总砷浓度。基拉尼湖CMS肠道组织在所有样品中含有最高数量的砷。通过对鳟鱼湖,钢铁湖和基拉尼湖的PCR测试,据透露,存在编码砷甲基甲基化的ARSM基因。完全,周围生物转化可能会影响蜗牛肠道组织中的砷积累。未来的研究旨在检查ARSM表达及其对蜗牛组织特异性积累的影响。
通常在树木中发现的绿树蜗牛是一种濒临灭绝的软体动物,具有独特的黄绿色壳,有效地伪装在树叶中,这是一个有用的特征,因为它主要以藻类为食。有趣的是,有些蜗牛会顺时针旋转,而另一些蜗牛会逆时针线圈,这是新加坡其他蜗牛物种中未见的现象。它可以使用浅色或橙色的体色而长达5厘米。活着的蜗牛的贝壳显得绿色,而空壳通常是黄色的。沿着八打架木板路有四个休息站 - tempinis Hut,Medang Hut,Macaranga Hut和Petaling Hut-提供了宁静的点,可观察周围的生物多样性。接近八打灵木板的尽头,您会遇到温柔的溪流。流充当水生野生动植物的栖息地,并在大雨期间充当自然排水系统。
在具有挑战性的环境中。栖息地多样性 - 腹足动物几乎征服了地球上所有可能的栖息地,适应了广泛的环境条件。这是您可以找到这些不同生物的一些关键栖息地:陆地蜗牛:土地蜗牛也许是我们许多人最熟悉的腹足类动物。在每个大陆都发现了它们,从南美的郁郁葱葱的雨林到非洲干旱的沙漠。土地蜗牛已经适应了各种生活方式,从挖洞到攀登树木和灌木。水生蜗牛:水生腹足类动物高度多样,可以在淡水,咸水和海洋环境中找到。有些人,例如淡水苹果蜗牛,已经适应了慢速河流和池塘的生活,而另一些则像锥蜗牛一样是强大的海洋掠食者。地下蜗牛:令人难以置信的是,一些蜗牛物种适应地下生命,居住在洞穴和地下水系统中[3]。
福寿螺属。尤其是福寿螺,福寿螺是 2000 年世界自然保护联盟 (IUCN) 评选的 100 种全球最危险入侵物种之一。此项列入名单是对这一南美物种在亚洲的广泛引入的回应,这种物种对农业和当地生态系统造成了巨大破坏。福寿螺入侵美国东南部长期以来被认为是福寿螺,但现在已知是另一种南美物种,即 P. maculata,这表明人们对某些苹果蜗牛了解甚少。此外,一旦被确认为一个独特的物种,P. maculata 最初被称为 P. insularum,并在美国被广泛称为“岛苹果蜗牛”,因为它对以蜗牛为食的大沼泽地蜗牛鸢的影响引起了持续的争议,大沼泽地蜗牛鸢是美国列出的濒危物种,最初专门以本地的 P. paludosa 为食。P. maculata 入侵美国东南部可能是由于其引入
不再搜索旧文件或等待蜗牛邮件。您的数字身份证,找到医生工具,可扣除的进度以及索赔状态都可以在My Highmark应用程序或MyHighMark.com上找到。您也可以通过应用程序或网站访问Mychart。如果您使用AHN的医生和设施,Mychart允许您与这些医生进行交流,查看测试结果等等。