SNG Grant Thornton 很荣幸能为各行各业的各类客户提供服务,包括大型跨国公司、上市公司、业主管理企业和新兴企业。SNG Grant Thornton 深入了解各行各业面临的复杂性和挑战,提供量身定制的解决方案和透明的报告,以满足各行各业组织的独特需求。该公司的行业经验确保各种规模的客户都能获得卓越的服务和指导,无论是驾驭全球监管框架、提高财务透明度还是支持增长战略。我们的行业经验包括以下领域:
摘要:电转气 (PtG) 是一种新兴技术,可以克服间歇性可再生能源 (IRES) 日益广泛使用带来的问题。通过水电解,电网中的剩余电力被转化为氢气或合成天然气 (SNG),可直接注入天然气网络进行长期储能。电转合成天然气 (PtSNG) 工厂的核心单元是电解器和甲烷化反应器,可再生电解氢在其中通过添加二氧化碳转化为合成天然气。PtSNG 工厂的一个技术问题是电解装置和甲烷化装置的动态不同。使用氢气存储系统可以帮助解耦这两个子系统并管理甲烷化装置,以确保长时间运行并减少停机次数。本文的目的是评估 PtSNG 概念在存储间歇性可再生能源方面的储能潜力和技术可行性。因此,通过改变输送到工厂的可再生电能与基于 12 MW 风电场的可再生能源 (RES) 设施产生的总电能之间的比率,定义并研究了不同规模的工厂(1、3 和 6 MW)。通过开发热化学和电化学模型以及动态模型进行分析。第一个模型可以预测工厂在稳定状态下的性能。第二个模型可以通过实施存储单元的控制策略来预测工厂的年度性能和运行时间。年度总效率在 42–44% 低热值(LHV 基础)范围内。工厂负荷率,即生产的 SNG 的年度化学能与工厂容量之间的比率,对于 1、3 和 6 MW PtSNG 规模分别为 60.0%、46.5% 和 35.4%。
任何 PtG 或 PtL(电转液)途径的共同步骤都是水电解,以提供后续燃料合成所需的 H 2。从技术角度来看,这是最重要的一步。24–26 最有效的技术是高温电解,利用固体氧化物电解池 (SOEC)。PtG 非常适合大规模应用,已由多个工业规模试验工厂证明。27–29 因此,通过 CH 4 进行储能具有三大优势:(i)它代表了最先进的技术,可以在短期内部署,(ii)可以采用新颖和成熟的发电厂技术将 CH 4 重新转化为电能(天然气发电;GtP),以及(iii)现有的天然气管网可用于其储存和分配,使其成为对能源转型过程以及工业和运输部门转型具有突出意义的能源载体。23,30
摘要可再生能源的挥发性性质需要存储以补偿失衡并提供可靠的基本负载。权力对甲烷技术促进了以合成天然气(SNG)形式的长期可再生能源存储在天然气网络中。与氢不同,网络中的SNG使用没有限制,天然气设备可以在SNG上运行。在甲烷剂中产生SNG所需的两个输入是氢和CO 2,可以从多个来源获得。这导致SNG生产中的多个可能的过程流程配置,每个过程都具有不同的性能。在GAM中开发了一个优化模型,以分析这些各种配置的性能。这项研究的目的是确定最佳配置,关键成本因素及其对生产成本的影响,以确定需要进一步发展以降低成本的领域。这项工作还旨在通过实施阶乘设计和多元分析(方差分析)方法来确定SNG每单位SNG的生产成本以及对生产成本产生最大影响的因素。甲烷剂,电解剂,沼气升级和氢存储被认为是这项工作中的基本过程单位。生产第一年确定的最低生产成本为0.432€/ kWh SNG。所获得的折扣生产成本表明,从现在起20年来最低的成本为0.143欧元 /千瓦时SNG。关键字:甲烷,SNG生产成本,合成天然气(SNG)。对生产成本影响最大的变量是甲烷甲的资本支出,然后是甲烷甲的能力。
摘要:非可编程可再生能源的能源积累是能源转型的关键方面。利用可再生能源的剩余电力,电转气工厂可以生产替代天然气 (SNG),可将其注入现有基础设施,进行大规模和长期的能源储存,有助于实现天然气电网脱碳。工厂布局、二氧化碳捕获方法和可能的电力联产可以提高 SNG 合成工厂的效率和便利性。在本文中,提出了一种同时生产 SNG 和电力的系统,该系统以生物质和可再生能源的波动电力为原料,使用基于 Allam 热力学循环的工厂作为动力装置。Allam 动力循环使用超临界 CO 2 作为演化流体,基于气体燃料的富氧燃烧,从而大大简化了 CO 2 的捕获。在所提出的系统中,富氧燃烧是使用生物质合成气和电解氧进行的。通过富氧燃烧产生的二氧化碳被捕获,随后与可再生氢一起用于通过热化学甲烷化生产 SNG。该系统还与固体氧化物电解器和生物质气化器耦合。从能源相关角度分析了整个工厂。结果显示,整体工厂效率在 LHV 基础上为 67.6%(在 HHV 基础上为 71.6%),同时生产大量电力和高热值 SNG,其成分可与现有天然气网络兼容。
航空通信日益复杂:航空电子系统越来越多地通过飞机内外的复杂网络连接在一起。这种连接的增加需要高度安全的系统来解决这种网络拓扑的限制。在本文中,我们介绍了我们开发的基于 IP 的安全下一代路由器 (SNG 路由器),提供调节、路由、不同数据源的安全合并以及保持它们的隔离。在设计过程中,我们搜索了一套解决方案,以最大限度地降低认证、设计和开发成本并保持高水平的安全性。本文的结构如下:我们首先介绍我们应用于 SNG 路由器的方法及其优势。然后,我们检查负责通过路由器交换的数据安全性的分区。本文以对我们路由器的实现的验证和对我们路由器性能的评估结束。
摘要:分布式能源系统的部署必须关注可再生能源发电的自用。创新的行业耦合策略可以发挥连接当地电力和天然气网络的作用。本研究旨在评估电转甲烷战略在城市能源区应用的能源和经济可行性。以一个住宅集群为例进行研究。两种光伏配置已用于评估不同可再生能源过剩条件下的替代天然气 (SNG) 产量。此后,通过改变系统规模实施电转甲烷战略。在能源和经济方面,一些重要的配置进行了相互比较。超过某个阈值限制,光伏尺寸的增加会略微提高有效自用能源。一旦系统规模合适,电转甲烷战略就可以利用所有可再生能源过剩,与单独使用光伏系统相比,潜在的能源消耗减少量几乎翻了一番。在大多数配置下,SNG 生产成本在 100 至 200 欧元/兆瓦时之间,与欧洲市场上的高天然气价格相比具有竞争力。因此,分散式 SNG 生产可以减少家庭年度支出,并可以缓解当前能源危机时期的能源贫困状况。
2014 年,地区市长在《十年愿景》中确定了素里和兰里 27 公里快速交通网络的三条优先走廊:104 大道、乔治国王大道和弗雷泽高速公路。2016 年 6 月,联邦和省政府宣布拨款建设该网络的第一阶段,即连接素里中心与吉尔福德和牛顿的 10.5 公里轻轨交通项目,即“SNG LRT 项目”。2018 年 9 月 4 日,各级政府宣布全面批准该项目并提供 16.3 亿美元资金。2018 年 11 月,素里新当选的市长和市议会撤回了对 SNG LRT 项目的支持,并要求 TransLink 致力于沿弗雷泽高速公路延伸天空列车。 2018 年 12 月 13 日,市长委员会指示 TransLink 暂停 SNG 轻轨项目,继续规划和开发弗雷泽高速公路上的空中列车项目,同时启动规划流程以更新弗雷泽南部快速交通战略,这与在三条走廊上建设 27 公里快速交通的 10 年愿景一致。2019 年 7 月,在成本更新、初步技术工作和第一轮公众参与之后,市长委员会指示 TransLink 完成素里兰利空中列车项目商业案例,制定分阶段建设计划,并根据 16.3 亿美元的可用资金准备采购。