目的本研究旨在研究工作行为与感觉性听觉损失(SNHL)之间的关联。方法进行了横截面分析(n = 90 286),以评估工作行为(包括班次工作,夜班工作和身体要求的工作)与发生(是/否),横向性(单侧/双侧)以及SNHL的严重性(/严重)之间的关联。进行了前瞻性分析,以探索新的SNHL与工作行为之间的关联(n = 8341)。多变量逻辑回归和COX回归模型。亚组分析进一步按年龄,性别和计时型进行了分层。此外,计算了多基因风险评分(PRS),以评估遗传易感性对关系的影响。结果横截面分析表明,轮班工作,夜班工作和身体要求的工作都与SNHL的风险增加有关(所有P <0.05)。这些工作行为也与SNHL的严重程度增加(全p <0.05)和双侧SNHL的可能性更高(全部p <0.05)有关。在前瞻性研究中,趋势通常与上述结果一致。此外,夜班工作与SNHL之间的关系特别明显,在早晨表型(p-interaction = 0.007),或≤5年的嘈杂工作环境中(p-interaction = 0.026)。重要的是,无论PRS的遗传风险水平如何,夜班工作与与SNHL的身体要求之间保持正相关。结论横截面和前瞻性分析都表明,班次工作,夜班工作和身体要求的工作与SNHL的发生风险,横向性和严重程度的增加有关,无论SHNL的PRS如何。
感觉性听力损失(SNHL)是最常见的发育感觉障碍,因为内耳内部功能或其与大脑的联系丧失。尽管在敏感的早期发育期间成功干预听觉剥夺和听力放大和耳蜗植入物可以改善语言结果,但SNHL患者可能会遭受多种认知功能障碍,包括执行功能缺陷,视觉认知障碍,以及在成功干预后,在说话感知中的视觉认知损害以及异常的视觉优势。为了评估SNHL参与者中听觉外听过程的损害发病机理是否与长期关联纤维有关,我们定量分析了使用SNHL参与者中的高角度分辨率扩散成像(HARDI)拖拉术衍生的纤维。排除了先天性疾病,围产期脑损伤或过早出生的病例之后,我们招募了17名10岁以下SNHL的参与者。呼叫式途径(CP)和6种类型的皮质皮质关联纤维(Arcuate fasciculus [af],下纵向筋膜[ILF],下枕骨下肌fors [Ifof]
感觉性听力损失(SNHL)是听力损失的类别,通常会导致很难理解语音和其他声音。听觉系统功能障碍,包括耳聋和听觉创伤,会通过神经塑性导致认知缺陷。认知障碍(CI)是指与学习,记忆,思维和判断有关的大脑较高智力过程的异常,这可能导致严重的学习和记忆缺陷。研究已经在SNHL和CI之间建立了很强的相关性,但尚不清楚SNHL如何对CI做出贡献。本文的目的是描述有关这种关系的三个假设,主流认知载荷假说,合并症假说和感觉剥夺假设以及与每个假设相关的最新研究进展。
到2050年,预计全球超过6%的全球人口的25亿个人将受到听力损失的直接影响,这使其成为最普遍的残疾之一。[1]在听力障碍中,感觉神经听力损失(SNHL)现在影响全球60岁以上的25%的人[2],大多数情况是不可逆的,因为毛细胞无法再生。[3]听力由听觉器官进行,由声音和感觉系统组成。在内耳中,毛细胞通过声波在基底膜(BM)上引起的振动模式转导成生物信号,这些生物信号被周围神经树突和沿着螺旋神经节神经元沿着大脑的螺旋杆所吸引,并在其上引起声音和言论的每日。[4,5]
简介:下一代测序(NGS)和生物信息学工具的快速进步使医生可以比以往任何时候都以更快,更具成本效益和全面的方式获得基因检测结果。大约50%的小儿感官听力损失(SNHL)病例是由于遗传病因,因此医师经常使用靶向测序板,这些测序面板鉴定了与SNHL相关的基因中的变体。这些面板允许尽早检测病原变异,使医生可以为家庭提供预期的指导。分子测试并不总是由于存在不同分类的多基因变异物,包括存在不确定意义的变体(VUS),因此并不总是揭示出明显的病因。这项研究旨在在存在其他多基因变异的情况下对与II型Usher综合征相关的患者进行初步的生物信息学表征。我们还为医生提供了一种解释算法,以检查医学遗传学家的分子结果。方法:审查多基因和/或VUS结果的记录,确定了一些潜在的感兴趣主题。为了本研究的目的,两个ADGRV1化合物杂合子符合包容性标准。测序,数据处理和变体调用(从序列数据中鉴定出变体的过程)是在Invitae(San Francisco CA)上进行的。初步分析遵循美国医学遗传学与分子病理协会(ACMG-AMP)在2015年和2019年概述的建议。本研究利用计算分析,预测数据和人群数据以及Clinvar数据库中的图表审查以及公开可用信息的临床信息。结果:将两个受试者鉴定为基因ADGRV1中变体的化合物杂合子。主题1的变体被预测为有害的,而受试者2的变体被预测为无欺骗。这些结果基于Clinvar,多个计算数据,人群数据库以及临床表现的已知信息。
糖尿病(DM)是一种以高血糖为特征的代谢障碍[1]。在1型糖尿病(T1D)中,高血糖是胰腺β细胞自身免疫性破坏导致胰岛素分泌绝对缺乏的结果[2]。在2型糖尿病(T2D)中,超甘氨酸是由胰岛素抵抗产生的,补偿性胰岛素分泌反应不足[3,4]。在过去的几十年中,全球DM的人数已从1980年的1.08亿人口增加到2014年的4.22亿人,其中绝大多数是T2D。截至2021年,全球大约有840万个人的T1D个人,一项建模研究预测,到2040年,这一数字可能会增加到13.5-1740万个人[5]。研究疾病的病理生理学,紧密弥补人类临床状况的动物模型的可用性至关重要。在1987年之前,没有可用的动物模型来理解糖尿病(DM)的分子基础。在低剂量链球菌(STZ)对实验动物的影响之后,景观发生了变化。用STZ治疗的小鼠表现出胰岛素缺乏,高血糖,多毒性和多尿症,在患有T1D的人类中看到的镜像[6]。随后的研究已经对这些模型进行了补充和扩展[7,8]。这些动物模型是无价的工具,使研究人员能够深入研究DM的机制,探索长期高血糖和糖尿病引起的并发症,并评估潜在疗法干预措施的疗效[9,10]。DM固有的长期高血糖提出了多方面的挑战,其中包括低血糖和酮症酸中毒的复发性威胁生命的发作[11]。更重要的是,DM涉及各种并发症,包括心脏,心脏,周围动脉和大脑的动脉粥样硬化和血栓形成等大型问题,以及肾病,神经性病,神经性病和视网膜病[12-15]。最近的投资重点是阐明DM与感觉性听力损失(SNHL)之间的相关性,在几项研究中揭示了DM与听觉障碍之间的牢固关联[16-18](图1)。腹膜内听力障碍的潜在分子机制涉及高血糖诱导的微血管病,氧化应激和神经病。这些病理过程可能会损害耳蜗中的感觉结构,包括Vascularis,螺旋神经神经元和毛细胞,最终导致听力障碍(图2)。SNHL可以在使用不同的听觉技术的糖尿病动物模型中确定。听觉脑干反应(ABR)长期以来一直是听力学诊所的非侵入性工具,用于评估听力功能[19 - 24](图2)。ABR测量脑干活动以响应噪声暴露,并已演变为动物模型中的人工耳蜗突触病的宝贵指标[25-27](图2)。当研究证明
自身免疫性内耳疾病(AIED)是一种罕见的疾病,其特征是免疫介导的内耳损伤,导致渐进性感觉性听力损失(SNHL)和前庭症状,例如眩晕和耳鸣。这项研究通过分析三种潜在自身免疫性疾病的三例病例来研究AIED的发病机理和治疗策略:类风湿关节炎,复发性多层炎和IgG4相关疾病。AIED的病因涉及复杂的免疫病理学机制,包括分子模仿和“旁观者效应”,具有特定的自身抗体,例如针对热休克蛋白70(HSP70)的自身抗体,在人工耳蜗损伤中起潜在的作用。由于非特异性症状和缺乏独特的生物标志物,诊断仍然具有挑战性,强调需要进行全面的临床评估和排除其他听力损失原因。治疗主要涉及免疫抑制疗法,糖皮质激素作为第一线,在70%的病例中有效。然而,耐药性或部分反应需要使用其他药物,例如甲氨蝶呤和抗TNF和IL-6受体拮抗剂,例如甲氨蝶呤和生物制剂。早期干预对于有利的结果至关重要,如所研究的病例所证明的那样,及时的皮质类固醇和免疫抑制作用导致了显着的听力改善。这项研究强调了基于个人免疫概况和合并症的个性化治疗策略的重要性。我们的发现突出了AIED的异质性以及在难治性病例中生物疗法的潜力。