由于响应特性相似,使用单个电阻半导体传感器监测和分类不同气体具有挑战性。分离的传感器阵列可用作电子鼻,但这种阵列结构庞大,制造工艺复杂。在此,我们轻松制造了一个基于边缘生长的 SnO 2 纳米线的气体传感器阵列,用于实时监测和分类多种气体。该阵列由四个传感器组成,设计在玻璃基板上。SnO 2 纳米线从电极边缘在芯片上生长,相互接触,并充当传感元件。这种方法比后合成技术更有优势,因为 SnO 2 纳米线直接从电极边缘生长,而不是在表面上生长。因此,通过在高生长温度下将 Sn 与 Pt 合金化可以避免对电极造成损坏。进一步检查了传感器阵列对不同气体的传感特性,包括甲醇、异丙醇、乙醇、氨、硫化氢和氢气。雷达图用于改善对不同气体的选择性检测并实现有效分类。© 2020 作者。由 Elsevier BV 代表河内越南国立大学提供出版服务。这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
使用 SiC 掺杂 SnO 通道的高性能 P 型 TFT:通过优化掺杂和沉积后退火实现增强的迁移率和稳定性。Rauful Karim Khan 博士,日本九州大学工程科学学院先进材料科学与工程系助理教授。
1。最近,由于其低成本,高效率和便捷的制造,钙钛矿太阳能电池对许多研究人员变得更具吸引力。自从宫宫和同事于2009年首次报道以来,钙钛矿太阳能电池(PSC)技术已从3.8%提高到25%左右[1,2]。基本的钙钛矿太阳能电池由透明的导电层组成,例如弗洛林掺杂锡氧化物(FTO)或imper的掺杂锡氧化物(ITO),电子传输层,光敏的钙钛矿层,孔传输层,最后是金属电极。由于对所有层都是有效的,因此电子传输层对于高效率在PSC中起重要作用。tio 2是最常用的电子传输层之一,其各种制造方法(例如自旋涂层,喷涂,溅射等)。[3-5]。独立于制备技术,TIO 2结构包括一些问题,例如氧气空位和尤其位于TIO 2表面上的非化色缺陷[6,7]。那些缺陷可以防止电子流,从而导致钙钛矿太阳能电池性能不佳。一些研究人员报告了一些不同的材料,例如SNO 2,ZnO,CDS和WOX,而不是TIO 2作为电子传输层[8-11]。尽管CD作为电子传输层仍然远非令人满意,但它可能是用于修饰和钝化TIO 2表面的出色界面材料。最近,Hwang等。报道CD作为中孔TIO 2层的修饰材料,导致钙钛矿太阳能电池的稳定性提高[12]。Zhao等。 Dong等。Zhao等。Dong等。Dong等。使用CD作为前体溶液的添加剂,并观察到重组显着降低[13]。使用CD作为电子传输层,观察到PSC的效率为16.5%[14]。Wessendorf等。通过使用CD作为电子传输层[15]观察到滞后的减少。CD扩散到钙钛矿层会导致晶粒尺寸增加,从而提高效率[16]。 Mohamadkhania等。 使用SNO 2表面上的CD作为接口修饰符,观察到滞后降低并提高效率[17]。 ma等。 表明,在TIO 2表面上化学沉积的CD可将效率从10.31%提高到14.26%[18]。CD扩散到钙钛矿层会导致晶粒尺寸增加,从而提高效率[16]。Mohamadkhania等。 使用SNO 2表面上的CD作为接口修饰符,观察到滞后降低并提高效率[17]。 ma等。 表明,在TIO 2表面上化学沉积的CD可将效率从10.31%提高到14.26%[18]。Mohamadkhania等。使用SNO 2表面上的CD作为接口修饰符,观察到滞后降低并提高效率[17]。ma等。表明,在TIO 2表面上化学沉积的CD可将效率从10.31%提高到14.26%[18]。
使用聚合物电解质膜 (PEM) 进行电解的前景十分光明。[4,5] 缺点是,发生在阳极的氧析出反应 (OER) 表现出缓慢的动力学,因此妨碍了高效的整体电化学水分解。[5,6] 大规模电解需要价格实惠且活性高的电催化剂。[7] Ir-[8–10] 和 Ru-[11,12] 材料在酸性电解质中表现出最高的催化 OER 活性。由于其更高的稳定性,Ir-基催化剂代表了最先进的阳极材料。 [8,13,14] 为了提高活性贵金属的利用率,人们尝试了不同的方法,如将 IrOx 与地球上储量丰富的金属氧化物(TiO2、[15] Ta2O5、[16] SnO2[17])合金化,将 IrOx 以纳米晶体的形式分散在高表面积载体材料上(Sb 掺杂的 SnO2[18]),或通过模板工艺引入明确的纳米结构。[10,19] 然而,在添加绝缘过渡金属氧化物(如 TiO2[20] 或 Ta2O5)后,电导率经常会下降。[21] 至于载体材料的稳定性,掺杂已被证明可以提高耐腐蚀性,但大多数载体材料在酸性下稳定性较差。 [22] 感兴趣的读者可以参阅 Maillard 等人撰写的一篇综合评论。[23]
使用聚合物电解质膜 (PEM) 进行电解的前景十分光明。[4,5] 缺点是,发生在阳极的氧析出反应 (OER) 表现出缓慢的动力学,因此妨碍了高效的整体电化学水分解。[5,6] 大规模电解需要价格实惠且活性高的电催化剂。[7] Ir-[8–10] 和 Ru-[11,12] 材料在酸性电解质中表现出最高的催化 OER 活性。由于其更高的稳定性,Ir-基催化剂代表了最先进的阳极材料。 [8,13,14] 为了提高活性贵金属的利用率,人们尝试了不同的方法,如将 IrOx 与地球上储量丰富的金属氧化物(TiO2、[15] Ta2O5、[16] SnO2[17])合金化,将 IrOx 以纳米晶体的形式分散在高表面积载体材料上(Sb 掺杂的 SnO2[18]),或通过模板工艺引入明确的纳米结构。[10,19] 然而,在添加绝缘过渡金属氧化物(如 TiO2[20] 或 Ta2O5)后,电导率经常会下降。[21] 至于载体材料的稳定性,掺杂已被证明可以提高耐腐蚀性,但大多数载体材料在酸性下稳定性较差。 [22] 感兴趣的读者可以参阅 Maillard 等人撰写的一篇综合评论。[23]
CEI空间的物理布局并不是完全打算是用于全面使用的多功能设计,而是具有“办公室”功能,假设SNO 139中的计算机,SNO150,SNO150A,SNO150A和SNO150寒意主要用于工作人员和学生员工作为工作空间。但是,布局和意图已经转换,因此每周至少40个小时,CEI中的所有电子设备(不包括单个办公室)现在也可以供学生使用。因此,我们目前拥有的服务器/设备/技术无法跟上需求。
西部华盛顿滑雪胜地与越野步道史蒂文斯通行证北欧峰会在Snoqualmie White Pass北欧中心SNO-PARKS附近的I-90 Sno-Parks附近,带有滑雪道(请参阅Central Cascades Winter Recreation Council,以获取更多信息)请注意:有关更多信息)请注意:更多信息):有些小径与雪地鸡肉共享,周末很忙。在雪地摩托流量低时使用它们。知道在您出发之前与其他用户共享的哪些。hyak
金属氧化物半导体是一类在我们的生活中得到日益广泛应用的材料,因为它们具有有趣的可调能带隙、优异的化学和机械稳定性等。随着技术的进步,能够生产出薄膜、纳米粒子、纳米线和纳米棒形式的金属氧化物,它们的应用多年来不断增长,从半导体电子器件扩展到传感器、光电子器件、催化、能量收集和存储设备。1 – 38 半导体金属氧化物的一个有趣的应用源于这样一个事实:一些金属氧化物可以掺杂外来元素,从而表现出与金属相当的电导率。这种氧化物的薄膜允许光通过,几乎不产生吸收,因此这种薄膜非常适用于作为光电器件的电极,因为光电器件需要既对光透明又能像金属一样导电的材料。这导致了透明导电氧化物 (TCO) 的发展,它是近代大多数光电子和光伏设备不可或缺的一部分。导电透明金属氧化物薄膜,例如 SnO 2 和 ZnO(氧化锌),正在许多消费电子产品中找到应用,尤其是平板显示器、触摸屏、光伏设备、低辐射玻璃、节能窗和储能设备。8 – 10,12 – 14,39 透明导电膜是一种薄层导电材料,在可见光范围内具有低吸收率(或高光透射率),是上述任何设备的基本要求。20 电导率和透明度可以进行定制,以扩大其在大量应用中的效用。 20 – 26 除透明导电薄膜外,氧化物/金属/氧化物多层结构也得到了广泛的研究,以提高它们的光透射率和电导率,以满足 TCO 的要求。11,40 – 42 图 1 显示了不同的透明氧化物及其在光伏设备、触摸屏、平板显示器和节能智能窗中的应用。然而,只有少数掺杂特定元素的金属氧化物作为 TCO 表现出令人满意的性能,例如铟 (In) 掺杂的 SnO 2 (ITO)、氟 (F) 掺杂的 SnO 2、铝 (Al) 掺杂的 ZnO、镓 (Ga) 掺杂的 ZnO 等,尽管这些都有各自的局限性。二氧化锡作为透明导电氧化物 (TCO) 因其广泛的应用而受到了广泛的研究关注,并得到了许多研究人员的评述。 9,12,43,44 评论文章主要讨论了 ITO 的挑战和机遇。它既具有低电阻率,又具有
会议主题:用于太阳能收集的宽带隙材料 16:00 Luis Pereira 教授 (*) 里斯本新大学,葡萄牙 氧化物纳米结构在机械能收集中的应用 16:45 Frank Herklotz 博士 德累斯顿工业大学,德国 SnO 2 中的间隙氢供体:全面的光谱研究 17:00 Dwight R. Acosta Najarro 博士 墨西哥国立自治大学,墨西哥城,墨西哥 通过气动喷雾热解沉积的掺杂铼的 WO3 薄膜的电致变色性能恢复 17:15 Lars Korte 博士 (*) 柏林亥姆霍兹材料与能源中心,德国 高效钙钛矿/硅串联太阳能电池:材料和界面设计方面的挑战 19:00 特邀发言人晚宴(“Auerbachs Keller”) 2024 年 9 月 24 日,星期二 10:00 游览莱比锡美术馆 - MdbK (www.mdbk.de) 地点:Katharinenstraße 10 12:30 午餐(Aula) 会议主题:非晶态和非化学计量 TCO 14:00 Julia Medvedeva 教授(*)美国密苏里大学 材料基因组方法研究非晶态氧化物半导体中的缺陷 14:45 Takashi Koida 博士 日本筑波国家先进工业科学技术研究所 (AIST) 具有优异导电性的非晶态 SnO ₂ 薄膜:生产方法、特性和与非晶态 In ₂ O ₃ 薄膜的比较分析