由于运载火箭的运载能力通常超过主要客户的要求,因此在纳入次级小型航天器时,通常需要考虑质量、体积和其他性能裕度。小型航天器有机会利用这种剩余能力,实现更具成本效益的太空飞行。适配器和分配器市场规模庞大,可在现有发射器上紧凑地容纳多个小型航天器。这些技术为发射器提供了结构连接以及部署机制。这种方法被称为“拼车”,仍然是将小型航天器送入轨道的主要方式。术语“拼车”和“托管有效载荷”有时可以互换使用,但它们之间存在明显而微妙的差异;托管有效载荷服务为共享平台上的有效载荷提供进入预定轨道的空间,而拼车服务为集成到运载火箭或分离系统上的专用航天器提供空间。有关托管有效载荷的更多信息,建议读者阅读本报告的完整航天器平台章节。
在考虑小型航天器结构时,材料选择至关重要。必须满足物理性能(密度,热膨胀和辐射抗性)和机械性能(模量,强度和韧性)的要求。典型结构的制造涉及金属和非金属材料,每种材料都提供优势和缺点。金属倾向于更均匀和各向同性,这意味着在每个点和每个方向上的特性都相似。非金属(例如复合材料)是不均匀的,并且根据设计是各向异性的,这意味着可以将属性量身定制为方向载荷。最近,基于树脂或基于光聚合物的AM已足够进展以创建各向同性零件。一般而言,结构材料的选择受到航天器的操作环境的约束,同时确保了足够的发射和操作负荷利润。审议必须包括更具体的问题,例如热平衡和热应力管理。有效载荷或仪器对挤压和热位移的敏感性。
小型航天器航空电子(SSA)由航天器平台的所有电子子系统,组件,仪器和功能元素组成,包括主要的飞行子元素命令和数据处理(CDH)和飞行软件(FSW),以及其他关键飞行程序,以及其他关键飞行子系统,例如有效载荷和子系统Avions(PSA)(PSA)。所有这些都必须配置为特定的任务平台,架构和协议,并且受适当的操作概念,开发环境,标准和工具的约束。CDH和FSW是集成航空电子系统的大脑和神经系统,通常以某种方式与所有其他子系统(无论是在直接点对点,分布式,集成,集成还是混合计算模式)中提供指挥,控制,通信和数据管理界面。航空电子系统本质上是所有组件及其功能集成在航天器上的基础。由于任务的性质会影响航空电子建筑设计,因此航空电子系统的可变性很大。
多家公司已经开发了具有不同尺寸和外部体积分配的立方体卫星部署器。请联系您的赞助组织和/或发射提供商,了解您的任务中使用哪种部署器的详细信息。市场上有许多立方体卫星部署器,但主要的 2 个接口遵循经典的角轨或突出部分(夹紧和未夹紧),如图 2.6 所示。本章中的大多数航天器总线提供商可以适应不同的接口。有关 SmallSat 部署器的更多信息,请参阅“发射、集成和部署”一章。图 2.7 包括已成功在太空飞行的立方体卫星任务的图像,而图 2.8 提供了立方体卫星部署器在火箭上的位置示例。
(AFRL)空军研究实验室(BMS)电池管理系统(BOL)生命开始(CFRPS)复合纤维增强板(CIGS)CU(CIGS)CU(CIGS)SE2 SE2(ga)SE2(cots)商业 - 商业 - 货架(EOL)遗产(EOL)终端(EPS)终端(EPS)电力系统(ESA)电气系统(ESA)欧洲空间(ESA)欧洲空间(GAN)nitride(GAN)nitriide(ka)niTriede(GRC)NASNY ny nyy n. (Li-ion) Lithium-ion (LiCF x ) Lithium carbon monofluoride (LiPo) Lithium polymer (LiSO 2 ) Lithium sulfur dioxide (LiSOCl 2 ) Lithium thionyl chloride (MIL) Military (QML) Qualified Manufacturers List (NiCd) Nickel-cadmium (NiH 2 ) Nickel-hydrogen (OPV) Organic Photovoltaic (奥斯卡)基于碳材料(PCB)印刷电路板(PEASSS)的光传感器(sp)特定功率(交换)尺寸,重量和功率(TPV)热伏oltaic(TR)热辐射(TRL)技术准备水平(WH kg -1)瓦特小时每公斤瓦特小时
由于运载火箭的运载能力通常超过主要航天器的要求,因此通常有足够的质量、体积和其他性能裕度来容纳次级小型航天器。小型卫星可以利用这种剩余容量,以经济高效的方式将多个小型航天器运送到太空。适配器和分配器市场规模庞大,可以紧凑地将多个小型航天器安置在现有的发射器上。这些技术为发射器和部署机制提供了结构连接。这种方法被称为“拼车”,仍然是将小型航天器送入轨道的主要方式。术语“拼车”和“托管有效载荷”有时可以互换使用,但它们之间存在明显而微妙的差异;托管有效载荷服务为共享平台上的有效载荷提供进入预定轨道的空间,而拼车服务为集成到运载火箭或分离系统上的专用航天器提供空间。有关托管有效载荷的更多信息,建议读者阅读本报告的完整航天器平台章节。
次生有机气溶胶(SOA),是由挥发性有机化合物(VOC)氧化的低挥发性产物形成的大气颗粒物,会影响空气质量和气候。当前的3D模型无法重新产生大气有机气溶胶中观察到的可变性。由于许多SOA模型描述是从环境室实验中推出的,因此我们代表大气条件的能力直接影响我们评估SOA的空气质量和气候影响的能力。在这里,我们开发了一种方法,该方法利用全球建模和详细的机制来设计室内实验,以模仿有机过氧自由基的大气化学(RO 2),这是VOC氧化的关键中间体。利用了数十年的实验实验,我们开发了一个定量描述RO 2化学的框架,并表明先前没有研究SOA形成的实验方法已经访问了相关的大气RO 2命运分布。我们展示了概念验证实验,这些实验证明了SOA实验如何访问一系列大气化学环境,并提出了几个方向供将来的研究。
9 (j)(保险)必须自费在 SOA 期限和根据 SOA 签订的任何合同期限内,按照合理的商业条款投保并维持 SOA 详情中所述的保险,这些保险涵盖本 SOA 所涵盖的服务以及根据本 SOA 建立的任何合同。如果任何保单被取消或任何保单发生重大变化,供应商必须立即通知委托人。对于所有以“索赔”为基础的保单,供应商必须在 SOA 和 SOA 项下的所有合同结束后,维持至少 6 年或 SOA 详情中规定的其他期限的损失保险。供应商必须应要求及时向委托人提供每份保单的现金证明或委托人可能合理要求的其他令人满意的证据,以证明供应商已投保所需的保险。如果供应商不投保或维持这些保单,委托人或客户可以投保这些保单,供应商将负责委托人或客户(如适用)的投保费用。供应商的保险公司出具的货币证明副本应在委托人提出要求后五 (5) 个工作日内转发给委托人;或在供应商更新或更改保险单时收到货币证明。