人体与机器之间长期、高效和高度兼容的接口对于解决医疗保健等重大社会挑战以及解答理解人脑等重大科学问题都至关重要。我们建议了解和利用软材料技术——具有设计特性的聚合物、弹性体、水凝胶和生物组织——来形成人体与机器之间的接口。在本次极端力学快报 (EML) 网络研讨会 (Zhao, 2020) 中,我们讨论了软材料的设计以实现极端的机械性能,这对于形成这种长期、高效和高度兼容的接口至关重要,这种接口最终有可能融合人与机器及其智能。EML 网络研讨会演讲者和视频已在 https://imechanica.org/node/24098 上更新。© 2020 由 Elsevier Ltd. 出版。
压电能量收集可从振动、物体和身体的运动、撞击事件和流体流动等多种来源捕获机械能,以产生电能。这种能量可用于支持无线通信、电子元件、海洋监测、组织工程和生物医学设备。已经生产了各种自供电压电传感器、换能器和执行器用于这些应用,但是,增强材料压电性能以提高设备性能的方法仍然是材料研究的一个具有挑战性的前沿。在这方面,可以设计或故意设计材料的固有极化和特性来增强压电产生的能量。本综述深入探讨了先进材料(包括钙钛矿、活性聚合物和天然生物材料)中的压电机制,重点介绍了用于增强压电响应并促进其集成到复杂电子系统中的化学和物理策略。通过强调主要性能指标、驱动机制和相关应用,概述了能量收集和软机器人方面的应用。讨论了进一步改善材料和设备性能的关键突破和有价值的策略,并对下一代压电系统的要求以及未来的科学和技术解决方案进行了批判性评估。
直到开始治疗后大约1个月,恩扎拉胺的全部诱导潜力可能才能发生,尽管达到稳态的血浆浓度的enzalutamide浓度,尽管可能会较早一些诱导效应。应评估服用CYP2B6,CYP3A4,CYP2C9,CYP2C19或UGT1A1底物的药物的患者,应在XTANDI治疗和剂量调整的第一个月内被视为适当的情况。考虑到enzalutamide的长半衰期(5.8天,请参阅第5.2节 - 药代动力学特性),对酶的影响可能会在停止XTANDI后持续一个月或更长时间。在停止Xtandi治疗时,可能需要逐渐减少伴随药物。
其中w h与激发频率成正比,并且W e与激发频率3的平方成正比。在低于1 kHz的较低含量频率的应用中,例如运动核,磁滞损失对铁损失的影响大于涡流损失的影响。由于SMC核的磁滞损失高于电钢4),因此由于将SMC核应用于电动机而导致的运动效率降低是一个问题。在这种背景下,SMC核心的磁滞损失的减少对于扩大这种类型的核心的应用至关重要,并且已经进行了各种研究5-6)。但是,在大多数情况下,很难对磁滞损失进行定量讨论,因为在这些研究中影响了SMC核心的磁滞损失,并且很难定量地将这些因素分开。因此,为了进一步减少SMC核心的磁滞损失,定量分离影响Hystere SIS损失的因素并减少每个因素的影响很重要。因此,在这项研究中,进行了以下内容,以阐明减少SMC核心磁滞损失的指南。首先,安排了影响顽固性的微观结构因素的常规知识,与滞后丧失密切相关,并得出了磁滞损失和微结构因素的关系方程。然后,量化了微结构因子对SMC核心磁滞损失的影响,并且具有最大的因素
软机器人是在其机械结构中包含符合符合性组件的机器人[6]。近年来,这些系统在不同学科的研究人员中引起了极大的兴趣,因为它们在食品工业,机器人手术,人类机器人相互作用以及探索危险和非结构化环境等领域的潜力[6,7]。这些系统中的大多数受自然的启发,例如,在[16,17]中开发的机器人 - 在动物和其他生物中罕见的僵化行为。说明性的例子是大象树干,海星尸体,变色龙尾巴和章鱼臂。软机器人的一些特定功能是他们执行任务的潜在效率(以其合规性的性质)以及适应非预期的环境变化的能力。尽管这些特性很吸引人,但它们尚未在当前应用中发挥全部潜力,因为软机器人技术仍然是一个相对较新的领域,涉及刚刚建立的刚性机器人的理论和方法[19]。仍然处于范围内的软机器人技术的一些基本方面是对这些系统的设计,驱动方法,建模和控制[7,19]。本文介绍了几种低成本,肌腱驱动的软机器人设计。这项工作的总体目的是通过提供可访问的原型设计来帮助弥合当前差距,这些设计可用于教育和
©作者2024。Open Access本文在创意共享属性下获得许可 - 非商业 - 非洲毒素4.0国际许可证,该许可允许以任何中等或格式的任何非商业用途,共享,分发和复制,只要您与原始作者提供适当的信誉,并为您提供了符合创造性共识许可的链接,并提供了持有货物的启动材料。您没有根据本许可证的许可来共享本文或部分内容的适用材料。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http:// creativecommons.org/licenses/by-nc-nd/4.0/。
基于嵌入方法的图形表示可以更轻松地分析网络结构,可用于各种任务,例如链接预测和节点分类。这些方法已被证明在各种环境中都是有效的,并且已成为图形学习领域的重要工具。这些方法易于实施,它们的预测会产生可解释的结果。但是,大多数图形嵌入方法仅依赖于图形结构信息,并且不考虑节点/边缘属性,从而限制其适用性。在本文中,我们提出了图理论设计,以将节点和边缘属性纳入拓扑结合,从而使图形装饰方法无缝地在属性图上无缝工作。为了找到给定属性图的理想表示形式,我们提出了原始网络中的增强特殊子图结构。我们讨论了所提出的方法的潜在挑战,并证明了其一些理论局限性。我们通过比较15个标准生物信息学数据集上的最先进的图形分类模型来测试方法的功效。与原始图上的结果相比,在增强图上,在增强图上的分类精度最高可提高高达5%的分类精度。©2023 Elsevier B.V.保留所有权利。
摘要。本研究的目的是评估激光定位的功效和安全性以及软通道微创手术(MIS)以治疗脑出血,并开发出易于效率,安全和精确的区域的立体定向替代方案。为了实现这一目标,将60例脑出血患者随机分配给对照组(n = 30)或研究组(n = 30)。研究组中的患者用激光定位和软通道MIS进行治疗以去除血肿,而对照组用YL -1针穿刺治疗,以排干颅内出血。所有患者都接受了成功的手术治疗。研究组的血肿清除率为88.72±2.82%,对照组为84.50±4.26%。两组都达到了残留的血肿量<10 mL或血肿清除率> 70%,并且与对照组相比,血肿清除率的差异具有统计学意义(P <0.05),研究组的血肿清除率有所提高。研究组的7天术后格拉斯哥昏迷量表得分为13.0 [四分位间范围(IQR),12.0,14.0],对于对照组,对照组的12.0(IQR,11.0,13.0)表示,该研究组有改善的结果。研究组的穿刺精度为100%(30/30),而对照组为76.66%(23/30)(p <0.05)。