前言 第 ix 页 1 简介 1 1.1 智能代理 1 1.2 关于环境的推理 4 1.3 为什么要进行不确定推理? 5 1.4 多智能体系统 7 1.5 合作式多智能体概率推理 11 1.6 应用领域 13 1.7 参考文献 14 2 贝叶斯网络 16 2.1 第 2 章指南 16 2.2 贝叶斯概率论基础 19 2.3 使用 JPD 进行信念更新 23 2.4 图 24 2.5 贝叶斯网络 27 2.6 本地计算和消息传递 30 2.7 通过多个网络传递消息 31 2.8 大规模消息传递的近似值 33 2.9 参考文献 35 2.10 练习 36 3 信念更新和聚类图 37 3.1 第 3 章指南 38 3.2 聚类图 40 3.3聚类图中的消息传递 43 3.4 与 λ − π 消息传递的关系 44 3.5 非退化循环中的消息传递 47 3.6 退化循环中的消息传递 53
前言 第 ix 页 1 简介 1 1.1 智能代理 1 1.2 关于环境的推理 4 1.3 为什么要进行不确定推理? 5 1.4 多智能体系统 7 1.5 合作式多智能体概率推理 11 1.6 应用领域 13 1.7 参考文献 14 2 贝叶斯网络 16 2.1 第 2 章指南 16 2.2 贝叶斯概率论基础 19 2.3 使用 JPD 进行信念更新 23 2.4 图 24 2.5 贝叶斯网络 27 2.6 本地计算和消息传递 30 2.7 通过多个网络传递消息 31 2.8 大规模消息传递的近似值 33 2.9 参考文献 35 2.10 练习 36 3 信念更新和聚类图 37 3.1 第 3 章指南 38 3.2 聚类图 40 3.3聚类图中的消息传递 43 3.4 与 λ − π 消息传递的关系 44 3.5 非退化循环中的消息传递 47 3.6 退化循环中的消息传递 53
当前运输飞机的固定弯度机翼设计用于实现最佳巡航升力系数,并通过阶梯式巡航爬升飞行剖面实现高效飞行。未来的污染立法可能会禁止此类飞行,并且可能需要采用其他升力/阻力优化方法。固定弯度几何形状对于使用通用机翼的客机系列的开发也可能是不利的。机翼对于中程衍生飞机可能是最佳的,但对于较大和较小的变体则不是。一种解决方案是使用可变弯度襟翼用于巡航以及起飞和降落。本文将介绍克兰菲尔德大学在该领域的 15 年相关研究计划。这些研究表明,在某些情况下,此类系统可以带来成本效益,并提供操作灵活性,这是可变弯度概念的主要驱动力。
我们的系统检测到您的网络存在异常流量活动。请完成此 reCAPTCHA 以证明是您而非机器人发出请求。如果您在查看或完成此挑战时遇到问题,此页面可能会有所帮助。如果您继续遇到问题,可以联系 JSTOR 支持。