从那时起,SONOS 就以低得多的成本成为嵌入式闪存的有力替代品。SONOS 自 1980 年代以来就被称为 NVM 技术。然而,在早期,由于编程电压较高且高温下数据保留竞争力较弱,它在与浮栅技术的竞争中并不十分成功。英飞凌通过 SONOS 非易失性存储器堆栈中的电荷陷阱工程解决了这些障碍,并在高达 125°C(环境温度)的温度下实现了 10 年的保留时间,并且具有稳健的裕度。如今,英飞凌 SONOS 技术不仅用于英飞凌的许多产品,还用于许多其他公司(通过技术许可)。这些产品包括智能卡、独立 NOR 闪存、FPGA 和微控制器。SONOS 还具有很强的抗辐射能力,使其成为抗辐射产品的理想选择。最近,SONOS 开辟了一个令人兴奋的新应用:用于人工智能 (AI) 边缘应用中的神经形态计算的模拟 NVM。英飞凌正致力于优化 SONOS 技术的运行,以应对这一激动人心的领域。
让 FF0 FF1 FF_CB FF_CB_slow 0.9 4.28571E-10 2.78571E-10 6.14286E-10 5.42857E-10 1.9 4.25E-10 5.25E-10 7.75E-10 6.25E-10 2.2 3.42951E-10 4.91563E-10 1.10888E-09 5.02995E-10 2.8 6.72495E-10 5.52407E-10 1.39303E-09 7.2053E-10 6.3 1.14226E-09 8.30737E-10 2.54413E-09 2.49221E-09 6.4 1.9031E-09 1.71132E-09 4.48483E-09 3.79146E-09 7.6 1.73551E-09 1.89552E-09 4.33263E-09 3.17562E-09 7.8 2.15517E-09 1.90965E-09 5.23789E-09 4.11938E-09 9.7 2.21607E-09 2.14681E-09 6.5097E-09 4.50139E-09 9.8 2.72374E-09 2.0428E-09 8.31712E-09 3.98833E-09 24.1 2.86338E-09 4.36324E-09 3.02018E-08 1.5544E-08 24.3 3.56738E-09 3.99207E-09 3.08041E-08 1.38732E-08 29.4 4.05186E-09 5.15166E-09 3.99398E-08 1.77124E-08 29.7 3.46962E-09 6.47037E-09 4.3886E-08 1.80045E-08 29.8 1.05556E-08 1.16667E-08 0.0000001 3.97222E-08 30.37 7.88177E-09 1.03448E-08 8.02956E-08 4.66749E-08
每天,全球有超过 20 亿人创建了一个由互联设备组成的网络。到 2020 年,将有 330 亿台设备连接到网络。物联网 (IoT) 和互联消费者的兴起为吸引客户和创造经常性收入开辟了充满希望的新途径。新参与者颠覆了长期存在的行业,挑战了现有企业及其传统商业模式。例如,总部位于深圳的腾讯公司推出的微信移动支付正在让信用卡在中国变得多余。广播平台虎牙正在颠覆传统的电影和电视业务。共享单车系统摩拜正在改变中国和欧洲各城市的出行方式。消费电子公司 Sonos 正在从硬件到内容重塑音乐行业,盈创则正在用 3D 打印房屋和办公楼颠覆建筑业。
近来,电荷捕获存储器(CTM)器件,例如硅-氧化物-氮化物-氧化物-硅(SONOS)结构闪存,因其在 15 nm 节点以下进一步缩小的潜力而吸引了众多关注。1 与传统浮栅(FG)器件相比,CTM 器件具有可靠性更高、工作电压更低和制造工艺更简单等优点。1,2 然而,由于隧道氧化物和电荷捕获氧化物厚度的缩小,数据保留仍然存在许多挑战。3 为了克服这些固有的缺点,高 k 材料,例如 HfO2、Al2O3、TiOx、ZnO 和 ZrO2,已被引入到 CTM 器件中,以实现更好的电荷捕获效率和保留能力。4–10 此外,大存储窗口和低工作电压的理想共存仍然是一个巨大的挑战。目前大多数 CTM 器件在低于 6 V 的电压下工作时,存储窗口都可忽略不计。对于高 k 材料,掺杂已被证明是一种实现低功耗充电捕获存储器的潜在方法,例如 Zr 掺杂的 BaTiO 3 和氟化 ZrO 2 。11,12 Gd 掺杂的 HfO 2 (GHO) 是一种很有前途的高 k 材料,已被提出具有相对较高的陷阱密度、大的电导率
B. 非易失性存储器 IP 非易失性存储器 (NVM) 宏广泛用于数字电路中,用于存储指令、用户数据或任何配置数据。在 PROMISE 中,NVM 宏保存用户定义的 FPGA 配置数据。FPGA 由多个 LUT 实例组成。一般来说,每个 LUT 都有配置信号,这些信号定义 LUT 执行的逻辑功能。同时,这些配置信号的集合定义了 FPGA 的特定用户功能。在 PROMISE FPGA 中,配置数据在通电时从 NVM 上传到 LUT 寄存器。显然,NVM 的数据容量等于 FPGA 配置信号的数量加上辐射加固技术所需的冗余位。在 PROMISE 中设计的 NVM 宏基于 180 nm HV CMOS 工艺中提供的 E2PROM 类型的 SONOS 单元。该单元有望提供令人满意的抗 TID 效应鲁棒性。E2PROM 类型的写入/擦除操作提供可靠的数据保留参数。单元耐久性(擦除/写入周期数)比 FLASH 单元类型差,但目标应用不需要高耐久性。通过使用标准 DARE RH 缓解方法,NVM 内存可抵御 SEL 和 SEU/SET。除此之外,还实施了具有单纠错双错检测 (SECDED) 功能的纠错码 (ECC) 作为 SEU 缓解方法。ECC 还提高了 NVM 的一般读取稳健性,因此在太空应用中非常需要。[3] 中详细描述了不同类型的纠错码。因此,NVM 宏将用作坚固且抗辐射的数据存储 IP。NVM 宏具有 344 kbits 用户数据容量,并由 32 位数据字组成,其中 24 位为用户数据,8 位为 ECC。它分为 2 个 32x22 页的存储体。每页包含 8 个字。内存组织参数在表 II 中提供。 NVM 具有标准同步并行用户界面,可简化读取操作。NVM 具有内置电荷泵以及所有控制逻辑,可根据用户指令执行擦除/写入操作。NVM 宏中实现了各种测试模式,以支持生产测试流程。断电模式是另一个内存功能,它
专业经验第四阶段2022 - 现任总法律顾问,政府事务和商务行动主管,加利福尼亚州霍桑•建立和管理该公司的第一个法律,政府事务,人民运营以及航空航天卫星卫星推进启动公司的划分。•直接向首席执行官报告,并向首席执行官,董事会和执行团队提供顾问。•对法律行动的各个方面都负责;事项包括谈判商业和政府合同,风险投资提高,专利组合战略和起诉,知识产权纠纷,人力资源合规,合同纠纷,供应链合规行动和政府事务。•创建了新的人民运营部门和领导流程策略,就业纠纷和索赔,人才获取年度目标,公司IT和政府计划的IT安全合规性。•咨询执行团队的风险管理,同时推动空间电动推进的所有东西!Orrick,Herrington&Sutcliffe LLP 2019 - 2022年高级助理 - TCG和诉讼洛杉矶,加利福尼亚州•代表一般公司法,债务和风险资本融资,诉讼和上诉,就业法质疑,谈判商业合同和其他战略问题的财富,债务和风险资本融资,诉讼和上诉,代表财富500强和高增长的技术公司。•在专利诉讼,商标侵权和一般合同纠纷领域的客户提供诉讼和上诉律师。•为启动客户制定了IP策略和投资组合管理计划。•管理员工,初级助理和律师助理团队。•获得了有利的高风险诉讼确定和定居点,并为Sonos,Dish,Dish,Oracle,Micron和RingCentral等行业巨头取得了无数的成功。•评估并购交易的大型技术投资组合的技术顾问。美国2017 - 2019年联邦巡回法院的上诉法院(2年期)华盛顿特区•在我法学院的最后一年中,被选为享有盛名的2年联邦巡回赛文员。 •作为上诉法官的右手,参加法院会议,准备摘要,法律备忘录,向法官提出适当的建议,并向法院向法院发出了数十亿美元的高风险上诉事项。 •担任法官钱伯斯的首席技术顾问,专门针对文员团队的专利上诉和政府合同纠纷。 •监督一个由四个初级文员和暑期实习计划组成的团队。美国2017 - 2019年联邦巡回法院的上诉法院(2年期)华盛顿特区•在我法学院的最后一年中,被选为享有盛名的2年联邦巡回赛文员。•作为上诉法官的右手,参加法院会议,准备摘要,法律备忘录,向法官提出适当的建议,并向法院向法院发出了数十亿美元的高风险上诉事项。•担任法官钱伯斯的首席技术顾问,专门针对文员团队的专利上诉和政府合同纠纷。•监督一个由四个初级文员和暑期实习计划组成的团队。