量子技术有望生产出新的计算机、传感器和通信系统,它们可以以远远超出我们目前能力的方式收集、传输和处理信息,并可能为经济繁荣和国家安全带来巨大好处。它也对国家安全和经济稳定构成潜在风险:未来量子计算机最著名的应用之一是能够迅速破解用于保护当今互联网流量的加密系统,可能将敏感信息(例如健康记录、商业交易和国防相关通信)暴露给敌方拦截。2022 年 9 月,国家安全顾问杰克·沙利文 (Jake Sullivan) 明确指出量子技术是“未来十年将发挥巨大作用的少数技术之一”。1 大多数量子技术仍处于早期阶段,但考虑到它们在未来几十年可能发挥的战略重要性,特朗普和拜登政府以及过去几届国会都积极推动其发展。
是物联网的“眼睛”和“耳朵”,光学传感器和声学传感器是硬件系统中的基本组合。如今,主流硬件系统通常包含众多离散的传感器,转换模块和处理单元,往往会导致与人类感觉途径相比,相比之下,复杂的体系结构效率较低。在这里,提出了一种受人感知系统启发的视觉原告光电探测器,以启用具有计算能力的多合一视觉和声学信号检测。此范围不仅捕获了光,还可以光学记录声波,从而在单个单元中实现“观看”和“聆听”。栅极可调阳性,负和零光呼应会导致高度可编程的疾病。此可编程性可以执行各种函数,包括视觉特征推断,对象分类和声波操纵。这些结果展示了在神经形态设备中扩展受访方法的潜力,从而开辟了新的可能性来制作智能和紧凑的硬件系统。
将等离子体纳米结构与治疗药物以可控的方式结合到可生物降解的聚合物纳米粒子 (NPs) 中,对于纳米医学的不同应用很有意义。通过结合等离子体钯纳米片 (NSs) 的原位形成和封装药物的适当离子性质,可以设计出先进的混合纳米材料。这项研究提出了一种通过 Pickering 双乳液合成混合纳米结构的新方法。当 Pd 前体通过气相程序原位还原时,具有独特近红外 (NIR) 光学特性的各向异性钯 (Pd) NSs 可以组装在 < 200 nm NPs 的聚乳酸-共-乙醇酸基质内。混合纳米材料对外部 NIR 光刺激作出反应。当与疏水性药物结合封装时,在单一阶段中以前所未有的精度组装具有总负载选择性的等离子体纳米结构,为新型治疗诊断学提供了新的机遇,特别是在需要触发药物输送和光热疗法时。
元素金属薄膜在现代电子纳米器件中起着非常重要的作用,可用作传导通路、间隔层、自旋电流发生器/探测器以及许多其他重要功能。在这项工作中,通过利用固体金属有机源前体的化学性质,我们展示了元素 Ir 和 Ru 金属薄膜的分子束外延合成。当金属有机前体在基底表面分解时,通过对金属相的热力学和动力学选择,可以合成这些金属。采用原位和非原位结构和成分表征技术相结合的方式,研究了不同条件下的薄膜生长。在前体吸附、分解和晶体生长的背景下,讨论了基底温度、氧反应性和前体通量在调整薄膜成分和质量方面的重要作用。计算热力学将金属或氧化物形成的驱动力量化为合成条件和化学势变化的函数。这些结果表明,体热力学是低温下 Ir 金属形成的合理原因,而 Ru 金属的形成可能是由动力学介导的。
专用阻抗系统的引入。[4] 其最简单的形式是,在浸入细菌培养物的一对电极上测量单一频率的交流阻抗。[5] 随着细菌的生长,培养基的电导率会发生变化[6],这是细菌代谢的结果,不带电的底物会转化为带电的代谢物。[4,7] 这反过来又导致阻抗的变化。[5] 事实证明,阻抗优于通常用于尿液[8] 和血液中细菌检测的菌落形成单位计数。[9,10] 研究发现,培养基的电导率与吸光度监测的细菌生长有很好的相关性。[11] 尽管该领域取得了进展,但只有少数阻抗传感器实现了商业化,主要是因为检测限不令人满意且生产成本高。 [5] 1977 年共轭聚合物的发现和有机生物电子学的出现,为科学界提供了能够进行离子和电子传输的低成本、易于加工的材料。[12,13] 这导致了微生物学和感染研究的创新方法和新型设备的开发。[14–17]
''在战场战场监视的舞台上始于1967年,其计划开发了一个雷达系统,该系统将穿透丛林叶子并检测到移动的敌对入侵者。在越南战争期间发生了这项努力,当时呼吁国家实验室为战场战场监视提供解决方案,包括涉及地面和机载的传感器。地面传感器可以松散分为两类。特殊的地面雷达剂量用于检测矿山和其他炸药,以及隐藏的隧道和埋藏的商店。其他基于地面的雷达系统用于调查传感器视野内的大区域地形区域,以检测和识别固定的地面目标并检测,识别和跟踪移动的地面目标。为战术战场设计而设计的空气传感器需要及时地调查地面上的大面积,以检测和识别可能隐藏在地面混乱中或受对策保护的固定和移动的表面目标。林肯实验室已经开发了
未来建筑将关注四个关键方面:效率(优化系统和工作流程)、弹性(快速从问题中恢复)、可持续性(减少碳足迹)和交互式环境(响应居住者和环境条件)。重点是减少碳排放,建筑物占全球排放量的 40%,并改善新冠疫情后的室内空气质量。引入二氧化碳、挥发性有机化合物和其他污染物的传感器来监测和改善室内空气质量,使建筑更健康。占用和空气质量传感器相互作用,以控制空间利用率并防止病毒和细菌的传播。先进的传感器技术可以高精度地监测室内条件,有助于实现自动化设施管理和维护。通过预测性维护来提高运营效率,减少现场诊断的需要并允许远程管理。
对应物。[2]因此,2D材料非常适合柔性光电子,并且有可能用于下一代超薄电子和光电设备。[1]在2004年发现石墨烯时,首先实现了2D材料的概念。[4]石墨烯对其出色的电气,光学和机械性能引起了广泛的关注。[4-6]已经研究了各种技术应用,包括Spintronics,sensors,opetelectronics,SuperCapitors和Solar Cells等。[5,7] Besides graphene, other 2D materials, such as h-BN, phosphorene, silicene, germanene, and transition metal dichalcogenides (molybdenum disulfide (MoS 2 ), molybdenum diselenide (MoSe 2 ), tungsten disulfide (WS 2 ), and tungsten diselenide (WSe 2 ), etc.),近年来已经进行了广泛的研究。[1,8–11]单层二维材料的厚度通常在订单上或小于1 nm。同时,它们的侧向尺寸可以达到更大的尺寸(从微米到偶数英寸),并且在随后的处理或进行特征或设备应用程序的后续处理或后续测量之前,可以将2D材料转移到不同的基板上。
摘要 - 结合了LiDAR和相机等备用器的多数传感器融合(MSF),它引起了人们的关注,以此作为对Lidar Spoofiff的对策,威胁着自动驾驶系统的安全性。但是,当前无国界医生实施的有效性尚未在实际的自主驾驶系统中彻底列出。在这项研究中,我们提出了一个初始框架,旨在基于开源自动驾驶软件AutoWare Universe和Awsim Simulator探索MSF的潜在漏洞。通过使用此框架进行的实验,我们证明了自动保健宇宙中的MSF实现也可能导致整个系统的危险状态,即使摄像机丢失了镜头点云,摄像机可以正确检测对象。此漏洞之所以出现,是因为相机信息仅限于点云聚集中的补充作用。我们的发现表明,自动保健宇宙中的MSF实施缺乏针对LiDAR SPOOFIFG FIFG攻击的能力,由于其结构上的限制。该框架可在以下网址获得:https:// gi thub.com/keio-csg/multi-sensor-defense-analysis-platform。
摘要 - 手动跟踪是计算机图形和人机交互应用程序的重要组成部分。使用RGB摄像机没有特定的硬件和SENS(例如,深度摄像机)允许为大量设备和平台开发解决方案。尽管提出了各种方法,但由于阻塞,复杂的背景以及各种手势和手势,单个RGB摄像机的手跟踪仍然是一个具有挑战性的研究领域。我们提出了一个移动应用程序,用于从智能手机摄像机捕获的RGB图像中进行2D手跟踪。图像是由深层神经网络处理的,并经过修改,以解决此任务并在移动设备上运行,以寻找性能和计算时间之间的折衷方案。网络输出用于显示用户手上的2D骨架。我们在几种情况下测试了我们的系统,显示了交互式手动跟踪水平,并在变化的亮度和背景和小遮挡的情况下取得了令人鼓舞的结果。索引术语 - 深度学习,人类计算机互动,图像处理,手跟踪