目标本文档旨在作为对英国移植专业人员的实体器官移植(SOT)中人类疱疹病毒8(HHV-8)生物学生物学的简明更新。为已故捐助者引入HHV-8筛查计划已经在社区内有必要为专家意见告知的临床医生提供共识文件,同时承认没有足够的证据来制定准则。这是一项共识的陈述,旨在补充但不取代本地和地区专家临床建议。人类疱疹病毒8(HHV-8)HHV-8是一种大型的双链DNA病毒,在1994年在卡波西肉瘤中被发现为病因(1)。像其他疱疹病毒一样,HHV-8经历裂解和潜在阶段,建立了终身感染,即一旦建立了感染,它就会生命。在裂解阶段,宿主细胞的复制和裂解大大增加。激活病毒编码的“裂解开关”基因RTA导致HHV-8进入裂解阶段,其中表达了病毒编码的基因(至少85个基因和miRNA),并将宿主细胞机械重新定向到后代病毒体的制造和组装。裂解相促进了新细胞的感染和新宿主的向前感染。HHV-8被认为主要感染内皮细胞,单核细胞和B淋巴细胞。大多数非SOT传播被认为是通过唾液发生的,但是在SOT接受者中,与同种异体相关的传播被认为主要是由乘客单核细胞发生的(2)。移植后,HHV -8血清转化具有这解释了肝,肺和小肠移植受者的血清转化率明显更高。正如疱疹病毒感染中所预期的,实验和临床数据表明,T淋巴细胞的宿主免疫对于HHV-8的控制和调节很重要。尽管HHV-8对于引起某些恶性肿瘤是必要的,但也必须有其他共同因素,因为在非免疫抑制个体中很少有临床疾病。流行病学HHV-8血清阳性(抗体阳性)通常表明先前获得了病毒的感染和运输,通常是无症状的。在健康无症状个体的血浆或血清中病毒DNA的检测并不常见,因为HHV-8与细胞相关。血浆中HHV-8 DNA的检测与病毒复制状态有关,病毒载量与疾病表现水平之间存在相关性。然而,在没有可检测的病毒血症的情况下,可能会发生疾病(例如局部化的kaposi的肉瘤)。与其他疱疹病毒不同,HHV-8血清阳性在全球范围内差异很大。HHV-8的血清阳性接近撒哈拉以南非洲的50%,意大利南部的血清阳性接近约25%。非流行地区,例如美国(美国)和西欧报告,普通人群的血清阳性率为0至6%。在某些亚组中观察到较高的血清阳性,例如与男性发生性关系的男性(MSM)和静脉吸毒者(3);这些是非流行地区传播的重要途径。在美国,估计有3-7%的献血者是血清阳性的,但检测到HHV -8 DNA的速率最低(未测试的684个供体)(4)。
我们提出了一种灵活,有效的方法,可以通过在三维框架中耦合电荷,自旋和磁化动力学来建模现代SOT-MRAM细胞中的磁化动力学。我们扩展了现有文献,以获得为Rashba-Edelstein效应建模的旋转电流边界条件。我们计算起源于自旋大厅和Rashba-Edelstein效应的自旋 - 轨道扭矩,并表明我们的模型可以重现IR/COFEB双层结构中自旋扭矩的厚度依赖性的实验结果。此外,我们通过模拟无野外SOT-MRAM细胞中的磁化逆转来验证我们的方法,并表明,随着界面dzyaloshinskii – Moriya相互作用,我们获得了与先前报道的实验结果相似的域壁运动。
PAM ISMAIL是明尼苏达大学食品科学与营养系教授。 她是植物蛋白创新中心的创始人兼主任。 Ismail博士在食品化学研究方面拥有20多年的经验,这些研究重点是分析化学,蛋白质化学,化学和生物活性食品成分的命运。 她的研究重点是化学表征和增强功能,安全性,生物利用度和食物蛋白的生物活性性,此前遵循新颖的加工和分析方法。 她的小组目前正在研究改善食品蛋白的功能,热稳定性和生物活性的方法,以及在酶促和其他天然蛋白质修饰方法后降低过敏反应的方法。 她是“杰出教学奖”和“杰出教授奖”的获得者。在牛津布鲁克斯大学获得食品科学博士学位后,她在普渡大学食品科学系任职博士学位。PAM ISMAIL是明尼苏达大学食品科学与营养系教授。她是植物蛋白创新中心的创始人兼主任。Ismail博士在食品化学研究方面拥有20多年的经验,这些研究重点是分析化学,蛋白质化学,化学和生物活性食品成分的命运。她的研究重点是化学表征和增强功能,安全性,生物利用度和食物蛋白的生物活性性,此前遵循新颖的加工和分析方法。她的小组目前正在研究改善食品蛋白的功能,热稳定性和生物活性的方法,以及在酶促和其他天然蛋白质修饰方法后降低过敏反应的方法。她是“杰出教学奖”和“杰出教授奖”的获得者。在牛津布鲁克斯大学获得食品科学博士学位后,她在普渡大学食品科学系任职博士学位。
摘要 - 电动汽车中的电池包由电池管理系统管理,这些电池管理系统会影响包装中的电池状态,在这些系统中,此类系统在研究中受到了很多关注。最近,平衡细胞之间的脾气已成为研究主题。在我们的工作中,我们考虑了一个双平衡问题,我们旨在平衡充电状态和温度的两个参数。我们考虑一个智能电池组,可以绕过单个单元格,这意味着没有电流往返或从单元格,这使得单元在电池不充电或放电时冷却。此外,智能电池组可以估计每个单元的特性,进而可以用来定义单元格和电池组行为的模型。我们使用电池组的模型进行实验,其中每个细胞的配置都作为衰老的效果。对于具有异质细胞的这样的包装,我们在Uppaal Stratego中使用Q学习来合成一个控制器,该控制器最大化在平衡状态下所花费的时间,这意味着所有单元格的状态彼此之间都在特定的范围内。与两个基于阈值的控制器相比,我们在两个方面都有显着改善,这些控制器平衡了充电状态或温度状态。合成的控制器仅在1-4%的时间之间,温度在15-20%的时间之间是不平衡的。基于阈值的控制器的充电状态不平衡,多达37%的时间,或者在温度的时间内是44%的时间。最后,电荷状态和温度的最大变化减少。索引术语 - 启动电池组,数字双胞胎,SOC和SOT,双平衡,增强学习
最终器官衰竭患者的固体器官移植(SOT)是一种良好的救生治疗。虽然糖尿病(DM)被认为是全球肾脏衰竭的最重要原因,也是肾移植的常见原因,但1非糖尿病后移植后高血糖的发展是肾脏和其他SOT的普遍结果。移植后糖尿病(PTDM),先前称为移植后新发作糖尿病(NODAT),在接受SOT的人群中与临床临床结果有关。由于通用和移植特异性危险因素,PTDM应被视为一个不同的病理生理实体。本指南的目的是将重点放在移植后主要识别的血糖症或DM上。我们认识到,许多这样的人可能未发现移植前DM。的确,2014年的一份共识报告将NODAT一词更改为PTDM,以反映诊断的时间而不是发作时间。2我们专注于肾脏移植,但在可用的其他SOT上包含一些数据。尽管这些建议侧重于PTDM,但它们与患有先前存在的糖尿病的SOT接受者有关,这些糖尿病可能会在移植后遭受血糖降低。在这些指南中未解决胰腺胰腺胰腺移植的胰腺失败/失败之后的DM管理。
摘要:固体器官移植(SOT)受体因其受抑制的免疫力而受到COVID-19感染的风险增加。可用的数据显示,在SOT接收者中,Covid-19疫苗的有效性较低。我们旨在评估SOT受体中COVID-19疫苗剂量的数量增加,并确定影响该人群中疫苗反应的因素。进行了系统的综述和荟萃分析,以识别SOT受体中CoVID-19疫苗后的持续和完整的对体液和细胞免疫的研究。搜索以45个重复项检索了278个结果,而43个记录与纳入标准不符。标题和摘要筛选后,我们保留了189个记录,排除了135个记录。排除的原因涉及对免疫功能低下的患者(非移植接受者),透析患者以及已经从SARS-COV-2感染中康复的人的研究。包括55项观察性研究和随机临床试验(RCT)。在第三,第四和第五剂量之后,响应者的比例出现较高。无反应的危险因素包括年龄较大和使用霉酚酸酯,皮质类固醇和其他免疫抑制剂。这项系统的综述和荟萃分析证明了SOT患者中不同剂量的COVID-19疫苗后的免疫原性。由于疫苗的免疫原性低,可能需要采取其他改善疫苗反应的策略。
拓扑量子材料的独特电子性能,例如受保护的表面状态和外来的准粒子,可以提供带有垂直磁各向异性磁铁的外部无磁场磁力切换所需的平面自旋偏振电流。常规自旋 - 轨道扭矩(SOT)材料仅提供平面自旋偏振电流,而最近探索的具有较低晶体对称性的材料可提供非常低的平面自旋偏振电流组件,不适用于能量固定的SOT应用。在这里,我们使用拓扑WEYL半候选牛头牛Tairte 4具有较低的晶体对称性,在室温下在室温下表现出大型的脱离平面阻尼样SOT。我们基于Tairte 4 /ni 80 Fe 20异质结构进行了自旋 - 扭矩铁磁共振(STFMR)和第二次谐波霍尔测量,并观察到大型平面外阻尼样的SOT效率。估计平面外旋转大厅的构成为(4.05±0.23)×10 4(ℏ⁄ 2 e)(ωm)-1,这比其他材料中报道的值高的数量级。
摘要:我们预测磁性铬基过渡金属二硫属化物 (TMD) 单层在其 Janus 形式 CrXTe(其中 X = S、Se)中具有非常大的自旋轨道扭矩 (SOT) 能力。Janus 结构固有的结构反演对称性破坏导致巨型 Rashba 分裂产生较大的 SOT 响应,相当于在非 Janus CrTe 2 中施加 ∼ 100 V nm −1 的横向电场所获得的响应,这完全超出了实验范围。通过对精心推导的 Wannier 紧束缚模型进行传输模拟,发现 Janus 系统表现出与最有效的二维材料相当的 SOT 性能,同时由于其平面内对称性降低,还允许无场垂直磁化切换。总之,我们的研究结果表明,磁性 Janus TMD 是超紧凑自感应 SOT 方案中终极 SOT-MRAM 设备的合适候选者。关键词:自旋轨道扭矩、过渡金属二硫属化物、二维材料、范德华铁磁体
摘要 — 本文讨论了一种新的 MRAM 技术,其写入方案依赖于自旋轨道力矩 (SOT)。与自旋转移力矩 (STT) MRAM 相比,它提供了非常快速的切换、准无限的耐久性,并通过解决“读取干扰”问题提高了可靠性,这要归功于独立的读写路径。这些特性允许在系统内存层次结构的所有级别引入 SOT,并解决 STT-MRAM 无法轻松实现的应用程序。我们介绍了这项新兴技术和完整的设计框架,允许在任何抽象级别(从设备到系统)设计和模拟混合 CMOS/SOT 复杂电路。获得的结果非常有希望,表明该技术可以降低电路的功耗,而不会明显影响性能。
已成功地用于有效操纵磁化,从而导致了最近的商业STT磁性记忆解决方案。[1]自旋 - 轨道扭矩(SOT),该扭矩(SOT)使用高自旋霍尔效应(SHA)材料中的平面电荷电流产生的平面自旋电流,可以实现对磁磁性的更节能的操纵,并且正在达到商业兼容。[2–4]到目前为止,已经研究了各种高自旋 - 轨道耦合(SOC)材料,包括重金属,拓扑绝缘子(TIS),[5-7]以及最近的拓扑半学(TSMS),[8-11],[8-11] J S | / | J C | ,将其在转换电荷电流密度j c转换为旋转电流密度j s的效率的度量。此外,还研究了高HIM和FM材料层之间的界面工程,以最大程度地跨越界面,以最大化自旋透射式T int。[12–19]有效SOT Spintronic设备的主要挑战是最大化SOT效率,ξ=θSh·t int。[20]