Maria Ponomar,Valentina Ruleva,Veronika Sarapulova,Natalia Pismenskaya,Victor Nikonenko等。基于PVDF-SPA移植共聚物的功能多孔质子交换膜的结构表征和物理化学特性。国际分子科学杂志,2024,25(1),pp.598。10.3390/ijms25010598。hal-04383571
该集团是全球创新的工业卫星制造商。该集团业务的核心概念是工业5.0 +卫星技术(ST)。该小组将工业5.0原理与卫星技术相结合,以提高生产效率和生产力,重点关注“人与环境”,“生态和包容性”以及“卫星技术与应用”,以显着增强产品竞争力。该集团拥有大约200,000平方英尺的航空航天级精密制造清洁室设施,该设施获得了最高的国际ISO标准,包括100,000级和10,000级(ISO 14644-1:2015:2015:7级:7级),用于卫星组装,集成和测试。它具有独立的卫星系统设计功能,大规模卫星制造,组件生产和卫星操作。
摘要该特定论文探讨了空间“电推进系统”如何成为最有前途的未来派航天器推进技术之一,比化学和其他推进技术具有独特的优势。尽管共享某些相似之处,但空间航天器和空中飞行器的推进系统却不同,并且在这里探索了从下层大气到上层大气层的可能性的战略和系统方法,但在这里也很好地强调了这一点,尽管这也很简短。此外,关于特定的脉冲和产生的推力,在常规推进系统与电气推进系统之间进行了简要比较。此外,简要讨论了陆地气氛中不同的变异条件,以解决空间电气推进系统的各种挑战,并为这些挑战寻找新颖和创新的解决方案。还提到了当前情况下电气推进系统和各种推进器的不同类型的应用。主要重点是电力推进系统用于低空地轨道卫星的可行性,这些卫星主要用于地球观察,土地,水资源映射,气候警告系统,地球科学等。目前,从战略上开始进入电气推进系统及其在地球上层大气中的关键作用。虽然,但是,空间电动推进系统的其他各种应用,例如中高度的地球轨道卫星,主要用于航行目的,用于电信的地理卫星等,太空运输 - 发射器踢阶段,太空踢阶段,太空科学 - 互动空间探索等是这些特定纸张的范围,无法探索这些令人兴奋的范围。尽管如此,诸如卫星重量减轻,发射成本的减少,卫星的效率和功能的提高,空间碎屑数量减少,无毒绿色推进剂的使用减少,也将在该论文的范围之外讨论。
Sandip Harimkar,博士——教授,Albert H. Nelson,Jr. 主席兼系主任 机械与航空航天工程系主任,Donald 和 Cathey Humphrey 捐赠主席:Hanchen Huang,博士 俄勒冈州立大学塔尔萨分校教授兼副院长,Helmerich 先进技术研究中心主任,俄克拉荷马州 EPSCOR 办公室主任兼 Helmerich 捐赠主席:Raman P. Singh,博士 先进材料摄政教授兼 Herrington 主席:Don A. Lucca,博士,Drhc,CMfgE 摄政教授兼 OG&E 能源技术主席:JD Spitler,博士,PE 摄政教授,Williams 主席兼俄克拉荷马航空航天研究与教育研究所所长:Jamey D. Jacob,博士,PE 教授,Noble 基金会主席兼 NASA 俄克拉荷马州空间赠款联盟 /EPSCoR 主任:Andrew S. Arena,Jr.,博士 教授,Van Weathers 主席兼 Zink 中心主任:Dan Fisher,博士,PE 教授: Brian R. Elbing,博士;Afshin J. Ghajar,博士,PE(名誉);James K. Good,博士,PE(名誉);Lawrence L. Hoberock,博士,PE(名誉);David G. Lilley,博士,DSc,PE(名誉);Richard L. Lowery,博士,PE(名誉);Christopher E. Price,博士,PE(名誉);Gary E. Young,博士,PE(名誉) 副教授、Carol M. Leonard 教授职位和综合建筑系统中心主任:Craig Bradshaw,博士 副教授:Aaron Alexander,博士(兼职);Aurelie Azoug,博士;Christian Bach,博士;He Bai,博士;Frank W. Chambers,博士,PE(名誉);Imraan Faruque,博士;Jay C. Hanan,博士;Kaan Kalkan,博士;James M. Manimala;Kurt P. Rouser,博士;Khaled A. Sallam,博士;阿尔温德·桑塔纳克里希南博士;王硕道,博士;助理教授:Jacob Bair,博士;尼科莱塔·法拉博士;阿塔努·哈尔德博士;杰罗姆·豪塞尔博士;库尔萨特·卡拉博士;李思成,博士;赫曼斯·曼朱纳塔博士;阿德希尔·莫法塔哈里博士;普兰贾·诺蒂亚尔博士;哈迪·努里博士;瑞安·C·保罗博士;奇特拉斯·普拉萨德博士;里泰什·萨尚博士;赵伟,博士 讲师:Alyssa Avery,博士(研究助理教授);格斯·阿泽维多(Gus Azevedo)博士(研究助理教授); Joseph P. Conner, Jr.(教学副教授); Ronald D. Delahoussaye,博士(荣誉退休); Ben Loh,博士(研究助理教授); Ehsan Moallem,博士(教学副教授); Laura Southard(教学副教授)研究教授兼新产品开发中心主任:Robert M. Taylor,博士,PE
南非国家研究基金会(NRF)和AXA研究基金会合作启动非洲科学进步奖(ASPA)。ASPA打算通过未来的地球非洲枢纽(FEAH)支持非洲大陆早期职业研究的可持续性研究活动。赠款的核心是及时和地区相关的研究见解以及职业增长的产生。该赠款旨在帮助研究人员在各自的领域中建立自己的工作,建立他们的研究概况,并致力于在协作中制定独立和有影响力的研究计划。NRF - AXA研究基金合作伙伴关系的目标是支持非洲早期职业研究的出色科学,并通过以下方式增强了未来地球非洲的使命:
1挪威分子医学中心(NCMM),北欧EMBL合作伙伴关系,奥斯陆大学,奥斯陆0318,奥斯陆,挪威2 Laboratoire Physiologie Pellulagie Cellulaire etvégétale,Univ。Grenoble Alpes,CNRS,CEA,INRAE,IRIG-DBSCI-LPCV,17 Avenue des Martyrs,F-38054,F-38054,法国格林诺布尔,法国3号3号3月3日生物信息学中心,OSLO大学OSLO大学,OSLO大学,OSLO,OSLO,OSLO,NORWAIND 4 MRC LONDY INTICER,MRC LONDY INSTICE of MEDICAL SCIINUTE,DU CANEE,DU CANEE ROADN,DU CANE ROADN,DU CANE ROADN,W1 22 02科学,医学院,伦敦帝国学院医学院,哈默史密斯医院校园,杜凯路,伦敦W12 0nn,英国6 u cane of Electronics,Ru-derBoškovi研究所,BIJENI ˇCKA CESTA,CCKA CESTA,CCKA CESTA,10000 ZAGREB,CROATIA,CROATIA,CROATIA 7 Stanford Cancer Schoolitute of Stanford Cornement of Stanford of Stanford of Stanford of Stanford,CANANFOURT,CAN FORMEREN,CANFOURD,CANANFOURT,CANANFOURD,CANANFOURT不列颠哥伦比亚大学医学遗传学系,医学遗传学系,不列颠哥伦比亚大学,950 W 28号大街,卑诗省V5Z 4H4,加拿大9 H4,加拿大9号肿瘤生物学系,奥斯陆大学医院研究所,奥斯陆大学医院0424 OSLO,挪威10号生物学研究和生物学研究和Innovation Centry of Innovation and Innerovation Centres,002.丹麦哥本哈根N,奥斯陆大学临床医学研究所和奥斯陆大学医院,奥斯陆,挪威奥斯陆医院
在生物信息学中,查询复杂知识图(kgs)的能力对于提取有意义的见解至关重要。但是,手动制作SPARQL查询,尤其是跨多个连接的KGS的联合查询,甚至对于专家而言,甚至可能是一项耗时且具有挑战性的任务。这导致人们对知识图答录(KGQA)系统的需求不断增长,该系统可以将自然语言查询转化为SPARQL,从而弥合用户问题与可用结构化数据之间的差距。大型语言模型(LLMS)提供了一个令人兴奋的机会来应对这一挑战,从而有可能自动从自然语言输入中产生准确的SPARQL查询。然而,尽管LLM在该领域表现出了令人印象深刻的能力[1] [2],但当前的系统难以处理大规模,不断发展的kg,例如SIB Swiss Swiss生物信息学研究所的目录[3]。在这项工作中,我们提供了一种解决方案,旨在帮助SIB的生物信息学KGS [4],例如Uniprot [5],BGEE [6]或OMA [7],以探索和查询可用数据。我们的方法利用LLM和端点元数据来生成SPARQL查询,同时解决动态整合不断发展的数据集的挑战,而无需持续不断的再培训。通过提供可扩展的系统1,以适应生物信息学知识的复杂且不断变化的景观,我们的目标是显着减少在联邦公里范围内查询的时间和专业知识所需的时间和专业知识。
太空探索和剥削已经进入了前所未有的增长和可及性的新时代。新颖的空间任务概念需要提高自治水平,以降低运营成本并实现雄心勃勃的目标。尤其是,具有不合作目标的小行星探索和接近性操作强烈激励自主和低延迟导航解决方案的发展。当前的深空导航在很大程度上依赖于地面系统,主要是通过Extrack和DSN网络来进行辐射跟踪和轨道测定。但是,由于信号传播延迟,这些传统方法不能为航天器提供有关其状态相对于目标的实时信息。在近距离行动中,这种限制变得至关重要,在这种操作中,国家的确定可能导致任务失败或致命的碰撞。这些挑战强调了对航天器轨道确定和控制的创新方法的迫切需求,尤其是在需要精确,及时的导航响应的情况下。在Cosmica项目的框架内(CUP D53C22003580001),本研究旨在通过使用机器学习技术等,以在自主空间导航中推进最新技术。该研究的重点是开发围绕小行星和不合作目标的邻近性操作的智能系统,在这些系统中,传统的导航方法面临重大限制。通过将人工智能与
a 天体生物学中心 (CAB),CSIC-INTA,Carretera de Ajalvir km 4, 28850, Torrej ´ on de Ardoz,马德里,西班牙 b 天体生物学 OU,科学、技术、工程和数学学院,开放大学,米尔顿凯恩斯,英国 c 路易斯安那州立大学地质与地球物理系,路易斯安那州巴吞鲁日,美国 d 天体生物学研究组,航空航天医学研究所,DLR,科隆,德国 e LESIA,巴黎天文台,CNRS,PSL Univ.,92195,Meudon Cedex,法国 f 生物医学问题研究所,123007,Khoroshevskoye shosse 76a,莫斯科,俄罗斯 g 巴黎东大学和巴黎城大学,CNRS,LISA,F-94010,Cr ´ eteil,法国 h阿联酋航天局,阿拉伯联合酋长国 i 美国宇航局总部,华盛顿特区,20546,美国 j 南特大学、昂热大学、勒芒大学、法国国家科学研究院,UMR 6112,行星地球科学和地球科学实验室,F-44000,南特,法国 k 神户大学行星学系,657-8501,神户,日本 l 欧洲航天局 (ESA) - ESTEC 独立安全办公室 (TEC-QI) 行星保护官员,Keplerlaan 1, 2201,AZ,诺德维克,荷兰 m 东京大学地球与行星科学系,东京都文京区本乡 7-3-1,113-0033,日本 n 印度空间研究组织总部副主任 o 欧洲航天局 (ESA) – ESTEC,Keplerlaan 1, 2201,AZ,诺德维克,荷兰 p 联合国维也纳办事处外层空间事务厅政策和法律事务科委员会,奥地利 q 日本宇宙航空研究开发机构(JAXA),宇宙航行科学研究所(ISAS),日本神奈川 r 俄罗斯科学院空间研究所行星物理系,俄罗斯莫斯科 s 康奈尔大学,伊萨卡,纽约州,14853-6801,美国 t 中国国家航天局,北京,中国 u 意大利航天局(ASI),意大利罗马 v 法国国家空间研究中心(CNES),法国 w 中国空间技术研究院神舟航天生物技术集团空间微生物实验室,北京,中国