图 1. SPAAC 与 DBCO-PEG4-Fluor545 反应过程中形成的有机(β-D-葡萄吡喃叠氮化物)与无机(叠氮化钠)叠氮化物的三唑产物表现出不同的相对荧光强度。A) DBCO-PEG4-Fluor 545 与叠氮化物的点击化学或 SPAAC 反应产生的三唑产物取决于与 DBCO 部分反应的有机叠氮化物与无机叠氮化物的类型。这里显示了在 37°C 下 1X PBS 缓冲液(pH 7.4)中 DBCO-PEG4-Fluor 545 (200 µM) 与叠氮化钠或 β-D-葡萄吡喃叠氮化物 (400 µM) 底物发生 SPAAC 反应期间观察到的三唑部分特定吸光度 (B) 和整体产物荧光 (C) 的相对变化。有趣的是,虽然吸光度没有差异,但有机叠氮化物和无机叠氮化物的 SPAAC 反应产物的最终荧光读数明显不同。请注意,吸光度是在 309 nm 处测量的,而荧光是在 550 nm 激发和 590 nm 发射(570 nm 截止)处测量的。灰色方块和红色圆圈分别对应于在指定时间点收集的无机叠氮化物和有机叠氮化物的实验数据。线
目的:组织型纤溶酶原激活剂 (tPA) 及其衍生物 (Reteplase-rPA、Alteplase-tPA 和 Tenecteplase- TNKase) 已获得 FDA 批准,用于治疗心肌梗死、急性缺血性中风、肺栓塞以及动脉血栓形成和栓塞。它们的使用受到半衰期短和严重副作用(即内出血和异常血管重塑)的限制。它们的药代动力学可以通过各种半衰期延长 (HLE) 策略来增强,例如聚合物结合 (PEGylation)、与血液的长循环成分 (白蛋白、IgG、红细胞) 结合以及糖工程。近年来,白蛋白结合引起了广泛关注,许多药物已获得 FDA 批准 (胰岛素地特胰岛素、利拉鲁肽、Albinterferon、rIX–FP)。我们假设,通过 SPAAC(应变促进叠氮化物 - 炔烃环加成,点击化学)将 tPA 衍生物与白蛋白结合,通过增加流体动力学半径并允许药物的 FcRn 循环,可以延长 tPA 药物的半衰期。
生物正交化学因其出色的生物相容性和在改变生物分子的同时避免干扰自然生物过程的精确性而在生物医学领域迅速流行起来。本综述专门研究了生物正交过程在纳米级生物医学环境中的基本概念和实际用途,包括药物管理、癌症治疗和光学成像领域。我们重点介绍了最近的突破,例如点击化学、四嗪配位和应变促进叠氮化物-炔烃环加成 (SPAAC) 的利用,这些突破允许在生物系统中进行极具选择性和效率的生物分子改变。此外,我们将这些方法与传统的生物共轭技术进行比较,研究它们在未来生物医学研究中的潜力及其在治疗靶向方面的优势。本综述旨在全面概述生物正交化学、其当前用途以及在临床环境中充分发挥其潜力必须克服的障碍。
乳酸链球菌肽是一种用作天然食品防腐剂的肽,本研究采用该肽开发新型纳米载体系统。使用 20 kHz 流通式超声技术成功制备了直径为 100 ± 20 nm 的稳定均匀的乳酸链球菌肽壳纳米乳剂 (NSNE)。NSNE 表现出有限的毒性、高杀菌活性和高载药能力 (EE 65 % w/w)。此外,乳酸链球菌肽壳还用于位点特异性附着重组产生的癌症靶向配体 (α HER2 LPETG IgG)。采用独特的两阶段(生物点击)方法,包括分选酶 A 介导的叠氮化物生物结合 (SMAB) 和应变促进叠氮化物炔烃环加成 (SPAAC) 反应,成功组装靶向 NSNE (NSNE DOX - α HER2 IgG) 并装载化疗药物阿霉素 (DOX)。最后,NSNE DOX - α HER2 IgG 显示出癌症特异性结合,并对表达 HER2 的肿瘤细胞具有增强的细胞毒性。
应变促进炔烃-叠氮化物环加成 (SPAAC) 已成为生物正交结合和表面固定中不可或缺的工具。虽然许多研究都集中于增强环辛炔的反应性,但是仍然缺少一种无需任何复杂设施即可评估环辛炔-叠氮化物固定化结合效率的简便方法。在本研究中,与荧光团或生物素部分连接的二苯并环辛炔/双环壬炔 (DBCO/BCN) 的不同衍生物被图案化在超低污染聚合物刷上,这可以在不进行任何先前的封闭步骤的情况下避免非特异性蛋白质污染。聚合物刷由防污底部嵌段和叠氮化物封端的顶部嵌段组成。使用普通荧光显微镜对通过微通道悬臂点样 ( μ CS) 点样的有序阵列进行结合效率的评估。两种环辛炔均通过 μ CS 与含叠氮化物的二嵌段聚合物刷表现出可靠的结合性能,但根据蛋白质结合试验,DBCO 显示出更高的分子固定表面密度。这项工作为选择合适的环辛炔与叠氮化物偶联提供了参考,并可用于设计用于分析物检测、细胞捕获和其他生物应用的生物传感器或生物平台。
AFM显微照片(图S1)。D H分布记录在分散在Tris-Edta(TE)缓冲液中的CMP上的Malvern-Zetasizer-Nano仪器上(5 mM Tris,1 mm EDTA,1 mm EDTA,5 mm NaCl,pH 7.3)。(d)菌株促进的叠氮化物 - 烷基环加成(SPAAC)的方案 - 铜铜的铜线自由点击反应在叠氮化物标记的CMPS和二苯并杂志环链(DBCO) - 修饰的ssDNA低聚物之间。(e)根据耗尽测定估计的平均值(SEM)标准误差的平均ssDNA数量与标称移植密度r(x)相比。(f)在90 MA处的0.5%琼脂糖凝胶上,在不同的R(x)值上对CMP和CMP-DNA偶联物进行的琼脂糖凝胶电泳移位测定,P代表装载口袋。(g)CMP-DNA的凝胶相对前(r f)相对于r(0)样品的r f,无ssDNA作为r(x)的函数。(h)CMP-DNA偶联物的体积加权粒子流体动力学大小(D H)作为R(x)的函数。面板F和G中的实线是拟合参数r f lemal = 0.42 dna/nm 2和n = 6.3和r falt = 0.48 dna/nm 2和n = 4.5的山丘方程。比例尺分别在面板(a)和(b)中为50和100 nm。
核酸的研究合成第6节(主席:Kathie Seley-Radtk E)9:35-9:50 OP4 - Malgorzata Honcharenko,Karolinska Institutet一种新颖的方法,是一种合成寡核苷酸多核苷酸多核苷酸的新方法Peyrottes,蒙彼利埃大学,CNRS碳碳和氯核苷磷酸类似物作为恶性疟原虫抑制疟原虫的新型化学型10:15-10:30 OP6 - Robert Britton,Robert Britton,Simon Fraser University,快速,灵活,柔性,可稳定的,可伸缩的核心合成,the tea coffee teacoy 10:30:30:30:55 55 55 55 55 55(55 55) Asanuma)10:55-11:20 IL8 - 塞奇·范·卡伦伯格(Serge van Calenbergh),根特大学结核素类似物与重要的Human and Fivestock疾病相似的原生动物病原体11:25-11:40 OP7 - Nicholas Chim,Nicholas Chim,加利福尼亚大学,最大程度地融合了最有效的TRYMASE TRYMASE TRYMASE TRYMASE TRYMASE TRIMPSINGS TRIMPTIONT, 11:45-12:00 OP8 - Michal Hocek,捷克科学学院酶合成基础改性RNA与工程DNA聚合酶基础修饰的RNA 12:00-13:30午餐,海报II II次,第8届海报(主席:FUMI NAGATSUGI:FUMI NAGATSUGI)13:30-13:30-13:55 IL9 - ROGERSTRASES基于Rogerstrified Artrins on Artnified Artnifirent on strutt on strutt on strutt rocority rogation intriptiation寡核苷酸ES 14:00-14:15 OP9 - 加利福尼亚大学的Dong Wang,圣地亚哥分校的结构基础,是通过Cel-lular RNA聚合酶14:20-14:20-14:35 OP10-Michiko Kimoto,Xenolis Pte的转录遗传字母识别的遗传字母。Ltd. Six-Letter DNA Aptamer Generation as an Antibody Alternative 14:40-16:00 Coffee, tea Recruitment/Discussion session Session 9 (Chair: Ramon Erit ja) 16:00-16:25 IL10 – Kazuo Nagasawa, Tokyo University of Agriculture and Technology Control of functions of dynamically formed high-order nucleic acids by polyoxazole compounds 16:30-16:45 OP11 – M. Carmen Galan, University of Bristol Small molecule G-quadruplex ligands are antibacterial candidates for Gram- nega- tive bacteria 16:50-17:05 OP12 – Shigeori Takenaka, Kyushu Institute of Technology Double-strand structuring of oligo-thymine by cyclic bis-naphthalene diimide Session 10 (主席:Takehiko Wada)17:10-17:25 OP13 - Vyacheslav V. Massey University University结构的结构引导抑制癌症DNA-Mutating酶Apobec 3A 17:30-17:30-17:55 IL11 - Zlatko Janeba,Iocb purague pare