本文提出了一种使用YOLO算法估算车速的新方法。通过分析车辆沿连续线的运动,系统可以计算车辆的移动速度以及覆盖已知距离所需的时间。与基于物理数据的传统方法不同,此方法仅使用视频数据,使其无创和可用作为现有监视摄像机。Yolo附加使用或复杂安装。与传统方法相比,这种方法侧重于诸如准确性,适用性和及时性等因素。通过成功的实验,我们证明了基于YOLO的系统可以高精度估算车辆速度,并为自动驾驶汽车控制和交通管理提供了良好的解决方案。该计划还提供了一个机会,可以通过为全球交通监控提供成本效益和大规模的解决方案来改变交通监控。
摘要:我们回顾了多体系统中量子信息处理的数学速度限制。在1972年的Lieb-Robinson定理证明后,过去二十年来,其应用于其他问题的实质性发展,例如量子系统在经典或量子计算机上的模拟性,纠缠的产生,甚至是间隙系统的地面状态的性质。此外,Lieb-Robinson的界限已以非平凡的方式扩展,以证明具有功率相互作用或相互作用玻色子的系统中的速度限制,甚至证明了在卡通模型中出现的量子模型中出现的量子重力概念。我们概述了发生的进展,突出了最有希望的结果和技术,并讨论了一些仍然开放的中心问题。为了使新移民达到速度,我们提供了该领域最重要的结果的独立证明。
有关产品适用于某些类型应用程序的陈述是基于Vishay对典型要求的了解,这些要求通常在通用应用中的Vishay产品上放置。此类陈述不是关于产品适用于特定应用的适用性的约束性陈述。有责任验证具有产品规范中描述的特定属性的特定产品适合在特定应用程序中使用。数据表中提供的参数和 /或规格在不同的应用程序中可能会有所不同,并且性能可能会随着时间而变化。客户的技术专家必须为每个客户应用程序验证所有操作参数,包括典型参数。产品规格不会扩展或以其他方式修改Vishay的购买条款和条件,包括但不限于其中表达的保修。
量子速度极限 (QSL) 何时才是真正的量子?虽然 QSL 时间的消失通常表示经典行为的出现,但目前仍未完全了解经典性的哪些方面是这种动力学特征的起源。在这里,我们表明 QSL 时间的消失(或量子速度的发散)可以追溯到量子可观测量不确定性的降低,因此可以理解为这些特定可观测量出现经典性的结果。我们通过为经历一般高斯动力学的连续变量量子系统开发 QSL 形式来说明这种机制。对于这些系统,我们表明导致 QSL 时间消失的三个典型场景,即大压缩、小有效普朗克常数和大粒子数,可以从根本上相互联系。相反,通过研究开放量子系统和混合态的动力学,我们表明由于添加经典噪声而导致状态不相干混合而出现的经典性通常会增加 QSL 时间。
转弯对动物至关重要,尤其是在捕食者期间 - 猎物相互作用并避免障碍。对于飞行动物,转弯由(i)飞行轨迹或行进路径的变化以及(ii)身体取向或3D角位置组成。只有通过调节与重力相关的空气动力来实现飞行的变化。鸟类如何相对于转弯时身体方向的变化来协调空气动力的产生,这是遵守鸟类操纵飞行中使用的控制策略的关键。我们假设鸽子相对于其身体沿均匀的方向产生空气动力,需要改变身体方向以重定向这些力转动。使用详细的3D运动学和身体质量分布,我们检查了缓慢飞行的鸽子(哥伦比亚利维亚)执行90°转弯的净空气动力和身体方向。即使鸟类的身体取向差异很大,在整个转弯的整个转弯中,下冲程上平均的净空气动力在固定的方向上也保持固定的方向。在回合的早期,身体方向的变化主要重定向下冲程空气动力,影响了鸟的飞行轨迹。接下来,鸽子主要重新征收前向飞行中使用的身体方向,而不会影响其飞行轨迹。令人惊讶的是,鸽子的上风产生的空气动力力量大约是下文中产生的空气动力的50%,几乎与嗡嗡声鸟产生的相对上行力相匹配。因此,鸽子通过使用全身旋转来改变空气动力产生的方向来改变其飞行轨迹,从而实现低速的情况。
摘要: - 在数字图像处理中,中位过滤器用于减少图像中的噪声。中间过滤器考虑了图像中的每个像素,并用邻域像素的中位数代替嘈杂的像素。中值是通过对像素进行排序计算的。排序依次由比较器组成,该比较器包括加法器和乘数。乘法是算术计算系统中的基本操作,用于许多DSP应用程序(例如FIR滤波器)。加法电路用作乘数电路中的主要组件。随身携带阵列(CSA)乘数是通过基于多重逻辑的建议的加法单元格设计的。提出的加法电路是通过使用香农定理设计的。将乘数电路进行了示意图,并使用VLSI CAD工具生成它们的布局。模拟了所提出的基于加法器的乘数电路,并将结果与CPL和其他基于Shannon的加法器细胞设计的电路进行了比较。通过使用90nm特征大小和各种电源电压来模拟所提出的基于加法器的乘数电路。Shannon Full Adder Cource的乘数电路比其他已发表的结果在功率耗散和面积方面提供了更好的性能,这是由于Shannon Adder电路中使用的晶体管数量较少。
› 两个 AURIX™ 设备之间的高速通信速度高达 320 MBaud › 一些衍生产品上有两个 HSSL 实例(例如并行通信、双倍带宽)FPGA 支持的协议 › 低引脚数(2 x 2 LVDS、1 x 时钟) › 从远程触发中断
发展 罗克韦尔柯林斯致力于为您提供创新可靠的 HF 解决方案。无论是全新的全集成高频数据链路 (HFDL) 无线电、低成本 HFDL 升级套件还是数字调谐天线耦合器,罗克韦尔柯林斯都能将您的 HF 投资提升到更高的性能水平。规格 频率范围 2.0 至 29.9999 MHz 连续 射频功率输入 工作:400 W PEP + 1 dB 调谐:平均最大 85 W 调谐时间 初始:2 至 4 秒(典型值),7 秒(最大值) 快速调谐:250 毫秒 调谐精度 1.3:1 VSWR 最大值 主电源 115 V ac,400 Hz 占空比 连续,平均功率为 125 W 调制类型 SSB、AME、CW 和 PSK 温度范围 -40°C 至 +70°C 工作 振动 D0-160C Cat C、Y、L 冲击 6 G,持续时间为 11 MS 碰撞安全性 15 G 峰值,持续时间为 11 MS 高度 非加压、非温控,最高可达 50,000 英尺 湿度 0% 至 95%,65°C 至 38°C,暴露 240 小时 尺寸 高度:最大 7.52 英寸宽度:最大 5.02 英寸 长度:15.72 +/- 0.06 英寸 重量:最大 17 磅
测试轴承模型................................................................................30 测试配置....................................................................................31 冲击载荷测试结果(轴不旋转)...............................................33 冲击载荷测试结果(轴以 50 krpm 的转速旋转)....................................41