祷告 客座牧师作了如下祷告: 让我们一起祷告。 全能的上帝,我们感谢您赐予我们新的一天,感谢您赐予我们一切美好的礼物,包括自由、社区、家庭甚至生命本身。我们感谢您今天把这些男男女女带到这里,为我们伟大国家的共同利益而工作。我们祈祷您赐予他们智慧,以应对他们面临的复杂问题。我们祈祷您赐予他们耐心,以在分歧中相互理解。我们祈祷您赐予他们勇气,使他们坚强,做您眼中正确的事。愿他们努力为贫穷、失业、饥饿、生病和孤独的邻居服务。我们祈祷您利用他们为整个国家服务;愿我们的政府以美德领导;愿企业繁荣昌盛;愿我们的学校充满热爱学习的孩子;愿我们的法律制度公正;愿我们的军队和执法部门保护我们的安全;艺术家和音乐家会用美激励我们;我们的农民
大语言模型(LLM)可以调用各种工具和API来完成复杂的任务。作为最强大和最通用的工具,计算机可能会由训练有素的LLM代理控制。由计算机提供动力,我们可以希望建立一个更广泛的代理,以帮助人类进行各种日常数字作品。在本文中,我们为视觉语言模型(VLM)代理构建了一个环境,以与真实的compoter屏幕交互。在此环境中,代理可以通过输出鼠标和键盘操作来观察屏幕截图并操纵图形用户界面(GUI)。我们还设计了一个自动控制管道,其中包括计划,表演和反映阶段,指导代理商与环境不断互动并完成多步骤任务。此外,我们构建了Screena-Gent数据集,该数据集在完成每日计算机任务时会收集屏幕截图和计算序列。最后,我们培训了一个模型,即Crabitagent,该模型可以达到与GPT-4V的可比计算机控制能力,并展示了更精确的UI定位功能。我们的尝试可以进一步研究建立通才LLM代理商。代码和更详细的信息在https://github.com/niuzaisheng/screenagent上。
众所周知,技术进化运动的技术正在通过螺旋方式进行。一些科学解决方案呈现了数十个或有时几百年前的一些科学解决方案被现代,更有效的解决方案逐渐被驱逐出来,要么这些想法基于当前的IT技术提升而具有新的生活。因此,每一次持续的技术进步都应该有助于我们不仅可以加速某些科学解决方案和方法,而且实际上,为了扩展选择领域的估计估算任务实现的方法,因此,我们可能会获得更具成本效益和“聪明”的结果。例如,在当今自动化和计算技术的CMOS设备中实施的新晶体管开发的想法已在1926 - 1928年获得朱利叶斯·埃德加·利利恩菲尔德(Julius Edgar Lilienfeld)专利。同时,有史以来第一个现场效应的晶体管(FET)于1960年30年后提出,而Carver Mead制备了孤立的快门的进步。1977年,来自Bell Laboratories的George Makkalahem表明,FET应用可能会大大提高计算技术的执行速度。新的双极晶体管上市加上逻辑元素,微芯片在快速增长的需求期间的整合度相对较低, *通讯作者:tres-4b@yandex.ru
引言随着人工智能融入社会加速了数字化转型,解决问题的方式从人类行为的自动化转变为人类认知的自动化。人工智能技术有望在不久的将来发展成为像电力和网络技术一样的通用技术。为了反映人工智能融入人类劳动系统的未来,教育目标应该重新配置,以描绘我们社会不断变化的动态(Parliament 2018)。因此,还应该设计一套小学课程,为在人工智能泛滥的世界中培养和激励下一代人。关于应该向谁教授人工智能的讨论从大学生转向小学生。目前的人工智能教育主要在课程完善的大学开展。大学人工智能教育的目的是让学生成为职业发展的学术和行业专家。然而,基础教育中的人工智能教育应该以培养学生的人工智能素养为中心。盲目套用高等教育的人工智能课程不足以满足小学教育的目的。小学教育的人工智能课程应该考虑小学生特有的能力。小学教育的目标是为学生提供机会,加强核心能力,使他们能够成功地作为社会成员发挥作用。小学的能力应该以培养学生理解人工智能综合世界的能力为目标。
中国空间技术研究院 (中国) 643 26,135 30 空客 (欧洲) 611 13,954 67 波音 (美国) 430 14,624 88 Energiya (俄罗斯) 430 7,401 37 三菱电机 279 89,137 20 IHI 201 13,657 28 泰雷兹 (欧洲) 153 6,495 54 三菱重工 131 27,823 16 霍尼韦尔 (美国) 117 19,431 7 雷神 (美国) 105 5,383 3 斯奈克玛 (欧洲) 102 4,363 6 太空系统/劳拉 (美国) 58 168 12 Viasat (美国) 1 685 0 蓝色起源 (美国) 12 19 1 SpaceX(美国) 1 10 9 Rocket Lab(美国) 5 5 0 北京零度空间科技公司(中国) 2 24 0 Mojave Aerospace Ventures(美国) 2 2 0 PLD space(西班牙) 0 0 0 Reaction Engines(英国) 6 13 4 Relativity Space(美国) 0 2 0 Skyrora(英国) 0 0 0 Oneweb(美国) 11 29 0 Blacksky(美国) 0 0 0 Capella Space(美国) 0 0 0 Hawkeye360(美国) 0 6 0 Iceye(芬兰) 0 1 0 OHB System(德国) 1 8 20 Planet(美国) 5 27 2 Spire Global(美国) 6 22 0 ispace(日本) 7 13 1 Planetary Resources(美国) 4 4 1 Astroscale 12 12 0 D-Orbit (意大利) 4 4 0 NASA (美国) 91 1,924 959 日本宇宙航空研究开发机构 119 500 473 国防科技大学 (中国) 69 6,274 280 哈尔滨工业大学 (中国) 338 25,237 274 加州理工学院 (美国) 19 2,648 314 韩国航空宇宙研究院 (韩国) 436 2,739 72
1. 简介 过程工业是人类生活质量的主要贡献者,因为它们提供的材料是当前发展的关键要素的基础,从计算机和运输系统到药物和医疗保健系统,仅举几例。过程工业也是欧盟 (EU) 财富和收入的主要来源,因此也是社会稳定的主要来源。目前,过程工业在欧洲直接提供约 850 万个就业岗位,间接提供 2000 万个就业岗位,年营业额达 2 万亿欧元,推动创新并为社会问题提供解决方案。然而,大规模加工材料也会对环境产生重大影响,并带有固有风险,需要最大限度地加以管理和降低。改进产品和生产工艺,减少这些产品在生产、使用和最终报废处理过程中对环境的影响,自过程工业诞生以来就一直是其首要任务。联合规划的伙伴关系 Processes4Planet(以下简称 P4Planet)及其前身——通过资源和能源效率实现可持续过程工业 (SPIRE) 公私伙伴关系在过去十年中有效地推动了这些创新。P4Planet 涵盖十个行业:水泥、陶瓷、化学品、工程、有色金属、矿物、纸浆和造纸、炼油、钢铁和水。除工程和水之外,所有这些行业都属于能源密集型产业 (EEI) 生态系统。P4Planet 当前的优先事项在其 2020 年通过的战略研究和创新议程 (SRIA 2050) 中定义。SRIA 2050 文件详细介绍了一种独特的协作方法,以实现对十个 P4Planet 行业转型至关重要的跨部门创新。该文件制定了 2050 年实现生态和经济可持续的欧洲过程工业的三条途径:
摘要。CE1 本研究使用基于 INSPIRE(欧洲共同体空间信息基础设施)框架设定的标准的人工智能 (AI) 方法绘制了滑坡易发性图。INSPIRE 是欧盟空间数据基础设施 (SDI) 的一项举措,旨在实现跨境空间数据的标准化,确保跨境基础设施和环境问题管理的互操作性。然而,尽管 SDI 具有理论上的有效性,但很少有实际应用使用 INSPIRE 标准。在本研究中,我们展示了 INSPIRE 标准如何增强地理空间数据的互操作性,并促进更深入的知识开发,以便在 AI 应用中对其进行解释和解释。我们设计了一个滑坡本体,嵌入了 INSPIRE 词汇表,然后将意大利威尼托地区的地质、河流网络和土地覆盖数据集与标准进行对齐。INSPIRE 正式扩展为包括广泛的滑坡类型代码列表、滑坡大小代码列表和滑坡敏感性概念,以描述地图应用的输入和输出。使用本体中的术语,我们定义了可能产生不同类型滑坡的区域的概念科学模型以及代表陆地表面的地图多边形。滑坡模型和地图多边形都被编码为语义网络,并通过对两者进行定性概率比较,分配相似度分数。然后将该分数用作滑坡敏感性的代理,并显示在网络地图应用程序中。在表达科学模型的本体中使用 INSPIRE 标准化词汇表促进了整个欧盟和全球范围内采用该标准。此外,此应用程序有助于解释
推荐引用。chan s-y&lau WL(2024)生物多样性记录:蜗牛的人口Tarebia Granifera,许多壳有变形壳。新加坡的自然,17:e2024018。DOI: 10.26107/NIS-2024-0018 ________________________________________________________________________________________________ Subjects: Quilted melania, Tarebia granifera (Mollusca: Gastropoda: Thiaridae).标识的主题:Chan Sow-Yan和Lau Wing Lup。位置,日期和时间:邦戈尔公园新加坡岛; 2023年10月6日;大约1007小时。栖息地:城市公园内的淡水池塘(图1),浅水和相对清澈的水。观察者:Lau Wing Lup。观察:在沿岸的浅水中观察到许多实例实例。13个标本(外壳高度17至25毫米)被随机挑选并检查(图。2)。所有的壳都表现出不同程度的侵蚀。一个例子在壳内唇上具有类似珍珠的钙质生长,以及嵌入在其地幔中的大约1.5 mm直径的松散,圆形,光滑和橙色的珍珠(图3)。其他活人表现出外壳变形,例如1)嘴唇不规则形状或缝隙(图10),2)深层通道或带有圆形孔的缝合线(图9),3)颜色模式的破坏(图6),4)波浪标记(图。3&4),5)部分打开脐带(图7),6)弯曲的尖刺(图4),7)相对于尖顶,膨胀的身体螺纹(图8)和8)标量表(未紧密盘绕)最后一个螺纹(图7)。标本被发现具有粉红色的脚(图11),这是非典型的,因为该物种通常具有灰色,黄色和黑色的颜料(Brandt,1974)。壳没有骨膜的壳往往是棕色或绿色黄色的较浅阴影,某些标本的螺纹上存在斑驳的图案。备注:据信塔雷比亚·格兰尼弗拉(Tarebia Granifera)原产于南亚和西太平洋的一些岛屿。它在非洲,地中海地区和中东以及美洲的热带地区已广泛侵入性。传播归因于水族馆的贸易,甚至归因于鸟类(Yin等,2022),它们在其他地方吃掉并在其他地方(Appleton等,2009)。它是Chan(1996)作为Melanoides Granifera首次在新加坡记录的。塔雷比亚花格兰菲拉(Tarebia Granifera)的人口,大部分在外壳上表现出异常的人似乎是不寻常的,因此很有趣。这些可能是由环境或遗传因素引起的,但是这里涉及哪些因素不能由一般观察结果确定。在非洲的其他地方,Appleton等。(2009)记录了2006年7月从夸祖鲁 - 纳塔尔省NSeleni河收集的749个个体(样本0.3%)的两个畸形的Tarebia Granifera标本。他们的身体螺纹相对于尖顶异常膨胀。与此处所示的标本相比,它们也更小(外壳高度10.9和15.4毫米)。Zoologische Mededelingen,83:525–536。引用的文献:Appleton CC,福布斯AT&demetriades NT(2009)在南非,入侵性淡水蜗牛Tarebia Granifera(Lamarck,1822年)的发生,繁殖和潜在影响(Astropoda:Thiaridae)在南非。Brandt Ram(1974)泰国的非海洋水生软体动物。 Archiv Fur Molluskenkunde,105:1-423。 Chan Sy(1996)新加坡的一些淡水腹足类动物。 海洋和岸,184-187。 Yin N, Zhao S, Huang X-C, Ouyang S & Wu X-P (2022) Complete mitochondrial genome of the freshwater snail Tarebia granifera (Lamarck, 1816) (Gastropoda: Cerithioidea: Thiaridae), Mitochondrial DNA Part B, 7:1, 259– 261.Brandt Ram(1974)泰国的非海洋水生软体动物。Archiv Fur Molluskenkunde,105:1-423。Chan Sy(1996)新加坡的一些淡水腹足类动物。 海洋和岸,184-187。 Yin N, Zhao S, Huang X-C, Ouyang S & Wu X-P (2022) Complete mitochondrial genome of the freshwater snail Tarebia granifera (Lamarck, 1816) (Gastropoda: Cerithioidea: Thiaridae), Mitochondrial DNA Part B, 7:1, 259– 261.Chan Sy(1996)新加坡的一些淡水腹足类动物。海洋和岸,184-187。 Yin N, Zhao S, Huang X-C, Ouyang S & Wu X-P (2022) Complete mitochondrial genome of the freshwater snail Tarebia granifera (Lamarck, 1816) (Gastropoda: Cerithioidea: Thiaridae), Mitochondrial DNA Part B, 7:1, 259– 261.海洋和岸,184-187。Yin N, Zhao S, Huang X-C, Ouyang S & Wu X-P (2022) Complete mitochondrial genome of the freshwater snail Tarebia granifera (Lamarck, 1816) (Gastropoda: Cerithioidea: Thiaridae), Mitochondrial DNA Part B, 7:1, 259– 261.
COWRIE(Cypraeidae)由于其美丽和相对可用性而在壳收藏家中很受欢迎。某些种类的牛里物种在壳体市场中具有很高的收集价值,但是这导致种类的数量增加和分类名称的不必要的扩散,几乎没有有关其形态的信息。因此,进行了这项研究是为了描述菲律宾辛丹甘湾获得的蛋黄壳之间的形态变化。壳形态属性(例如外壳形状,颜色,带,带模式),形态计量特征(例如外壳长度,宽度,身高,牙齿数量等。)和形状的表征是使用基于距离(Coriandis)的轮廓和里程碑的几何形态分析(GM)和相关分析产生的相对经过的分数。检查并分析了113种样本的16(16)个形态学和十(10)个单位特征。主要观察到颜色,带状图案,横向边缘,横向线,横向线,尖刺,牙齿,尺寸和形状的变化。相对经线分析显示,塞普雷氏菌种之间的壳形变化显着。相关分析显示塞浦路德家族物种之间的形态,大小和形状差异。相关分析中揭示的,观察到的大小变化与形状显着相关。观察到的差异可能是由于许多因素,包括遗传,生物和非生物因素。生物对独特环境的反应中的发展过程和生理学。因此,几何形态计量学和Coriandis帮助我们了解了塞浦路德家族的多样性的性质。需要进一步研究环境异质性,种群分布中的物种位置以及观察到的表型多样性的遗传基础。这种重点会导致有关Cypraeidae家族物种的系统研究中的其他信息。
1个地质流水学研究所,国家研究委员会(CNR),麦当娜·阿尔塔(Madonna Alta)126,06128意大利佩鲁吉亚(Perugia); sara.modanesi@irpi.cnr.it(S.M.); jacopo.dari@unipg.it(J.D.); angelica.tarpanelli@irpi.cnr.it(A.T。); silvia.barbetta@irpi.cnr.it(S.B.); luca.brocca@irpi.cnr.it(l.b。)2地球与环境科学系,库伊文(Ku Leuven),Celestijnenlaan 200E,3001鲁汶,比利时; Alexander.gruber@kuleuven.be(A.G.); gabrielle.delannoy@kuleuven.be(G.J.M.D.L.)3佛罗伦萨大学民用与环境工程系(DICEA),通过DI S. Marta 3,50139意大利佛罗伦萨4号,佩鲁吉亚大学民用与环境工程系,Via G. Duranti 93,06125 Perugia,意大利佩鲁吉亚,意大利,意大利5号,环境科学与政策部5 94720-3114,美国; mgirotto@berkeley.edu 6 Observatori de l'eb,Ramon Llull大学,Carrer Horta Alta 38,43520 Roquetes,西班牙; pquintana@obsebre.es 7 Cesbio,CNES/CNRS/CNRS/INRAE/IRD/UPS,18大道Edouard Belin,Edouard Belin,CEDEX 9,31401 Toulouse Universiationédetoulex Univers; michel.le_page@ird.fr(M.L.P.); lionel.jarlan@ird.fr(L.J.); mehrez.zribi@ird.fr(M.Z。); nadia.ouaadi@univ-tlse3.fr(n.o。)8 LMFE,科学学院Smlalia物理系,卡迪·阿亚亚德大学,马拉喀什4000,摩洛哥9,摩洛哥9号地球和地理知识系,TechnisscheUniversität维也纳(Tu Wien),WiednerHauptraße8-10,1040 Vienna,Outtia,Outhia,WiednerHauptstraße8-10,1040 Vienna; mariette.vreugdenhil@geo.tuwien.ac.at(M.V.); luca.zappa@geo.tuwien.ac.at(L.Z.); wouter.dorigo@geo.tuwien.ac.at(W.D.);拖船。 brumbacher@eleaf.com(J.B。); (H.P.); Pauline.jaquot@eleaf.com(P.J.)11 Global,33 Zithe King,2763卢森堡,卢森堡;西班牙,1,弗拉斯卡蒂,00044罗马,意大利;他们(E.V.); Diego.fernand@sa.int(D.F.P。)*正确:基督徒。