大蒜是一种重要的香料作物,用于调味食品,并且在传统医学中有悠久的使用历史。然而,黑霉菌是一种常见的真菌疾病,影响大蒜,这是由曲霉感染引起的。这种疾病显着影响大蒜的产生和质量。因此,本研究旨在评估新型绿色合成氧化锌纳米颗粒(ZnO-NP)对大蒜中黑色霉菌疾病的抗真菌活性。使用环保绿色合成技术用于使用耐锌细菌serratia sp。产生ZnO-NP。(ZTB24)。在本研究中,实验分析。UV-VIS光谱在380 nm处,透射电子显微镜(TEM),动态光散射(DLS)和ZETA电势证实了Serratia sp的绿色ZnO-NP的成功生物合成。中毒的食物技术和孢子发芽测试揭示了ZnO-NPS在体外条件下对尼日尔的抗真菌活性。通过从感染的大蒜鳞茎中分离出引起疾病的尼日尔真菌的存在,并使用转录序列(ITS)rDNA测序在分子水平上进一步鉴定出来。ZnO-NPS在250μgml-1浓度的ZnO-NP下,菌丝体的生长降至90%,孢子发芽为73%。在大蒜的最终治疗中,在不同浓度(50、100、250和500 ppm)的体内进一步使用了ZnO-NP。在7天和14天后评估了疾病严重程度的百分比,在接种前方法中,500 ppm的ZnO-NP的应用表现出0%的疾病严重程度,而与对照组相比,在接种后14天后,在7天和14天后,黑霉病疾病的疾病严重程度记录为1.10%和0.90%。因此,使用绿色技术合成的ZnO-NP的抗真菌活性为开发天然杀菌剂的开发铺平了道路,为传统化学控制方法提供了可持续可再生的替代方案。
在牙科环境中,患者和牙科保健人员 (DHCP) 之间传染性病原体的传播很少见。然而,从 2003 年到 2015 年,牙科环境中的传播,包括患者之间的传播,都有记录。1 – 4 在大多数情况下,调查人员未能将特定的感染预防和控制失误与特定的传播联系起来。然而,报告的基本感染预防程序的失误包括不安全的注射操作、未能在患者之间对牙科手机进行加热消毒以及未能监控(例如进行孢子测试)高压灭菌器。2,3 这些报告强调需要进行全面的培训,以提高对基本原则、推荐做法、其实施以及疾病传播必须满足的条件的理解。
简介。有效使用菌根接种剂对古巴农业构成了挑战。红薯是一种重要的人类和动物营养作物,是一种具有成功育种计划的菌根作物。目的。确定所有红薯品种是否对接种有反应,以及接种剂的有效性是否因品种和种植季节而异。材料和方法。2010 年至 2012 年期间,在古巴 Villa Clara 的纯土壤中进行了两次实验,每个种植季节一次,重复两次。评估了 17 个品种对三种接种剂的应用反应,其中施肥剂量为一半,以及三种未接种处理,施肥水平分别为氮、磷和钾剂量的 0%、50% 和 100%(100% NPK)。使用裂区设计。根产量、定植频率和菌根孢子产量被评估为响应变量。结果。不同品种对接种和施肥反应良好,产量存在差异。然而,接种 Rhizoglomus irregulare/ INCAM-11 可获得最高产量,超过(p≤0.05)仅使用 50% NPK 剂量的产量。在产量较高的雨季,接种剂之间的差异更为明显,在 13 个和 9 个品种中,使用 INCAM-11 获得的产量分别高于(p≤0.05)使用 Glomus cubense/ INCAM-4 和 100% NPK 获得的产量。在旱季,接种 INCAM-11 或 INCAM-4 或施用 100% NPK 获得的产量之间没有显著差异。在两个季节,接种 Funneliformis mosseae/ INCAM-2 的产量始终较低。接种 INCAM-11 时,定植频率和孢子产量始终较高 (p≤0.05)。结论。在评估的这些土壤条件下,接种 INCAM-11 对所有品种和种植季节均表现出更高的效果,从而获得更高的产量和菌根性能指标。
当蜜蜂暴露于农药时,发病机理可能会增加,从而阐明导致CCD的不同风险因素的相互作用的影响。免疫途径的任何变化都可能影响生物体抵抗病原体和疾病的能力。实际上,发现米巴多利降低了蜜蜂中免疫相关基因的表达(7),并且在暴露于伊迪克氯酸的蜜蜂中也可以观察到Nosema孢子的产生增加(8)。暴露于Ceranae和Neonicotinoid,Thiamethoxam,导致蜜蜂肠道微生物群营养不良(9)。其他考虑与Nosema共同暴露于肠道微生物群的研究的研究(10,11)。这强烈表明农药与病原体暴露与其相互作用的协同作用之间存在关系。此外,Nosema感染改变了Honeybee
药物治疗类别:止泻微生物 Enterogermina ® 是一种制剂,由 4 种克劳氏芽孢杆菌孢子菌株(SIN、O/C、T、N/R)的悬浮液组成,这些菌株天然存在于肠道中,无致病性。口服时,克劳氏芽孢杆菌孢子由于对化学和物理因素具有很强的抵抗力,可穿过酸性胃液屏障,毫发无损地到达肠道,在那里转化为具有代谢活性的营养细胞。孢子天生就能在高温和胃酸中存活。在体外验证模型中,克劳氏芽孢杆菌孢子可在模拟胃环境(pH 1.4-1.5)中存活长达 120 分钟(存活率为 96%)。在模拟肠道环境(胆汁和胰酶盐水 - pH 8)的模型中,克劳氏芽孢杆菌孢子表现出进一步繁殖的能力
细菌细胞和真菌孢子可以在大气中雾化并悬浮几天,暴露于水的限制,氧化和缺乏营养素。使用比较宏基因组学/metatranscriptomics,我们表明云与20种空气中微生物(包括真菌孢子发芽)的20种代谢功能的激活相关。整个现象反映了通过雨水重新吹干土壤中微生物活性的快速恢复,称为“桦木效应”。云滴中的营养资源不足会导致饥荒,使细胞结构可以减轻。云中微生物的代谢活性恢复可能有利于沉积后的表面侵袭,但在云蒸发后也可能有25次妥协进一步的生存。在任何情况下,云都显示为浮动生物活性水生系统。
细菌细胞和真菌孢子可以在大气中雾化并悬浮几天,暴露于水的限制,氧化和缺乏营养素。使用比较宏基因组学/metatranscriptomics,我们表明云与20种空气中微生物(包括真菌孢子发芽)的20种代谢功能的激活相关。整个现象反映了通过雨水重新吹干土壤中微生物活性的快速恢复,称为“桦木效应”。云滴中的营养资源不足会导致饥荒,使细胞结构可以减轻。云中微生物的代谢活性恢复可能有利于沉积后的表面侵袭,但在云蒸发后也可能有25次妥协进一步的生存。在任何情况下,云都显示为浮动生物活性水生系统。
1。了解微生物学作为科学学科的范围和相关性。2。确定正确类型的显微镜和染色。3。获得有关微生物的各种分类的知识。4。研究微生物的形态和结构。5。熟悉各种灭菌技术。单元1:微生物学历史 - 微生物学的定义和范围;微生物学史;微生物生命的起源 - 自发产生的理论;安东·范·莱恩霍克(Anton Van Leewenhoek),路易·巴斯德(Louis Pasteur),罗伯特·科赫(Robert Koch),约瑟夫·李斯特(Joseph Lister),托马斯·J·伯里尔(Thomas J.内共生理论;微生物学与未来。单元2:显微镜和染色 - 显微镜 - 简单,化合物,暗场,相对比,荧光和电子显微镜;染色方法和原理 - 简单,差异(克染色)和特殊的染色技术(酸快速染色,孢子染色,胶囊染色,鞭毛染色,阴性染色,染色,代码颗粒的染色)。